

#### AUTOMOTIVE

# Advantages of Being a Proactive Supplier Industry Changes – Weight Loss & Power Unit Strategy

19 October 2016 | Tokyo, Japan

#### Shou Osako

Director, East Asia | Automotive Advisory Services +813 6262 1726, <u>shou.osako@ihsmarkit.com</u>

# **Table of Contents**

# Structural/Industry Issues

- Regulatory Impacts : US/NA and China Forecasts
- Industry Issues

# **Solutions**

- Body-In-White Material Forecasts
- VPAC Bench & Scenarios
- Supplier Strategic Planning & Opportunity Targeting
- Competitor Analysis

### **Regulations Strengthen : Compliance Gaps Emerge**

#### Global CO<sub>2</sub> Targets Are Aggressive and Converging



#### **U.S. Midterm Evaluation Scenario**

By 2021, IHS Markit and EPA/NHTSA largely agree; the gap to compliance is relatively small

- > However, the years after that will be increasingly difficult for OEMs to comply
- > This will require much more technology than currently assumed by EPA/NHTSA



# Electrification Takes Hold

## Shift From S/S to Mild/Full Hybrids Starts Next Decade



#### Electrification is Required

- Larger D & E segment offerings require several solutions
- Fewer options into the next decade
- 48V is an enabler though a learning/cost curve ensues
- Low oil environment complicates
- CARB electrification
   mandate complicates

Electrification =Stop/start, MHEV, FHEV & BEV

## **Growth Plateaus: Mix Becomes Critical**



- Asian 4 volume eclipses D3 in 2017
- Sedan decline at D3 not compensated by S/CUV & Pickups
- Industry needs to react to the new marketplace



## **2016 China Fuel Efficiency Forecast**



\*The baseline fuel consumption forecast is simulated by VPaC

### **2016 China Fuel Efficiency Forecast**

#### CAFC Forecast 2016 vs. 2020



© 2016 IHS Markit

\*The baseline fuel consumption forecast is simulated by VPaC

# Electrification is the major trend of Chinese PV market

#### Total PV Market Development by Propulsion--China



#### Electrification is Required

- Pure ICE engine still took 80% of total PV market in 2015
- stop/start will massively equipped in the next 5 years and then replaced by Hybrid-Mild beyond 2022
- Low oil environment complicates
- electrification mandate complicates

# **Three Disruptive Realities**

### How Do Industry Participants Adapt ....

| Electrif-<br>ication              | <ul> <li>•S/S &gt;&gt; Plug-in Mild Hybrid &gt;&gt; Full Hybrid &gt;&gt; BEV</li> <li>•Enablers – Legislation, 48V, mass reduction</li> <li>•Implementation depends on segment, geography, scale, infrastructure and customer purchase capability</li> <li>•How does the ICE and accessories adapt through this process? What about transmissions and driveline?</li> </ul>                                                               |  |  |  |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|
| Automated<br>Driving              | <ul> <li>Speed of implementation depends more on legislation versus technical capability</li> <li>Several disruptors enter with little patience for automotive timelines, processes and structure</li> <li>Will the lack of driver intervention alter content and structure of the powertrain?</li> <li>Areas of the vehicle materially altered by automated driving: Interior, Powertrain, Electrical &amp; Chassis</li> </ul>           |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Shared<br>Mobility &<br>Connected | <ul> <li>New generations live in a more global, urban and environmentally-friendly world</li> <li>Ride sharing and reduced/limited driver input changes ownership, maintenance and use structures</li> <li>Impact on municipalities, healthcare, dealer/service infrastructure, need for a license</li> <li>How does shared mobility alter the vehicle cycle, supply base, insurance, aftermarket, standardization and safety?</li> </ul> |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Car                               | 2015-20202020-20252025+•PHEVs<br>•Level 2 >> 3 Driving<br>•Uber/Lyft•Increased Electrification<br>•Level 3 >> 4<br>•Expanding Mobility Solutions•BEVs & Infrastructure<br>•Level 3 & 4 >>> 5<br>•Vehicle Park Reflects Shifts                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |  |  |  |

# **A Looming Cost Cliff Alters The Market OEMs, Suppliers, Regulators and Customers Are All Impacted**

| 25    | L3/4 Autonomy, Global influences, System Profit Pools Shift | Success in a Rising<br>Cost Environment                           |
|-------|-------------------------------------------------------------|-------------------------------------------------------------------|
| ~ 202 | Full Hybrid, BEV and Alternative Drive Formats Rise         | Understand your                                                   |
|       | Integration of 'Non-Standard Materials' & Joining Methods   | profile                                                           |
| 20    | L3 Autonomy, More ADAS Content, Warranty Visibility         | <ul> <li>Diversify customers,<br/>segments and cadence</li> </ul> |
| ~ 20  | Mild Hybrid Rise Starts in Larger Segments, 48V             | • Hedge technologies                                              |
|       | Mass Reduction Shifts Beyond The 'Edge Segments'            | Smart vertical                                                    |
| N     | ADAS & Connectivity Content Rises, Warranty Costs           | Proactive engagement                                              |
| Toda  | Down Displacement, Multi-speed Trans & S/S                  | <ul> <li>Today's differentiators</li> </ul>                       |
|       | BIW & Chassis System Lightweighting Begins                  | are not tomorrow's                                                |

### **Supplier Business Planning Needs to Change**

- Increased Competition
- Faster Cycles
- Global Interconnections
  - > More than 70% of platforms are built in 2+ regions.
- Value Chain and Profit Pools Shift
  - > Suppliers hold a higher value of vehicles value: ~65% and growing
  - > Increased 'Buy' focused on electronics and powertrain vs. traditional systems
- Innovation Origination
  - > Suppliers drive more of the innovation and capital risk
- Product and Process Complexity
  - > Despite platform count reductions, homologation, legislation, reduced cadence and trim level expansion drives increased complexity







### Foresight Reigns: Suppliers Need to be More Proactive

- Anticipate market and technology trends
- Understand their organization's priorities
- Do they have the right customer mix?
- Is there a globalization strategy?
- Are the right human resources and physical footprint in place?
- Should they entertain joint venture or affiliations to reach new markets?

Suppliers Need expand their business planning past traditional vehicle and powertrain forecasts in an increasingly complex marketplace.

# **Solutions**

## Body-In-White Material Forecasts

- VPAC Bench & Scenarios
- Supplier Strategic Planning & Opportunity Targeting
- Competitor Analysis

# The BIW Material Forecast Process Establish BIW Share by System, Usage & Material



- Current Vehicle Structure
- IHS LV Production Forecast
- 3<sup>rd</sup> Party Research
- Industry Contacts/ Interviews
- Primary & Secondary Research
- Multi-Material exposure



Structures

Forecasted

- IHS LV Production
   Forecast
- IHS Sales-Based Powertrain gap analysis
- Capital, supplier affiliations,
- competition,
- capability & cost



ntegral Business Planning

- Output in Excel and PowerPoint
- Ability to drive material, process & location trends
- Linked to the IHS production forecast
- Unique approach suited to suppliers of all tiers

### Material Change Priority by System/Location in BIW

- Dependent upon OEM, Segment, Cost/Availability & Compliance Gap
  - Material Shift Order of Operations Assumptions (By Segment)
    - Hood
    - Decklid
    - Closures
    - Fenders
    - Front shock towers
    - Roof
    - A & B-Post
    - Rest of BIW bodies



*BIW Structure (Above)* BIW analysis also includes hood, fenders, closures, roof and decklids

### **Material Forecast Analysis Total NA LV Industry By Pounds**



Total BIW declines despite growth in CUVs and rising NA output

Source: April 2016 Material Forecast

# **Solutions**

- Body-In-White Material Forecasts
- VPAC Bench & Scenarios
- Supplier Strategic Planning & Opportunity Targeting
- Competitor Analysis

### **VPaC Planning Process**

- IHS Markit will set up a workshop to understand your goals:
  - Europe dropping diesels from A and B segment vehicles?
  - Global 2-3 cylinder dominance?
  - Cost/benefit for compliance, EV or PHEV?



- Outputs will leverage VPaC data to answer critical questions about the market or opportunity.
  - > Delivered in PowerPoint with a robust discussion of findings between IHS Markit and you

## **Example: U.S. Powertrain Technology Trend**



Out of the Base forecast, IHS predicts;

- Which technologies • will gain, remain, shrink
- When you will see robust growth
- 86% **Flectrification Trend** 
  - Trends not only • Engine/Transmission but other related components
  - Fuel efficiency for • each vehicle and Power unit level

2025

#### **Example: U.S. Midterm Evaluation Scenario**



 There are significant gaps in technology assumptions between IHS Markit and EPA/NHTSA

>GDI

- > Stop/start
- > Full HEVs
- > Plug-ins
- However, EPA and NHTSA indicate that this is enough technology for OEMs to comply with 2021 FE and GHG targets.

#### **Example: U.S. Midterm Evaluation Scenario**



- What would happen if we added additional technology to the fleet in order for the vehicles to comply in the 2022-2025 range?
- IHS Markit works together with our partners to set up scenarios/views of a possible future:
  - > Highest level of technology
  - > Specific technology path
  - > Lowest cost for compliance

# **Solutions**

- Body-In-White Material Forecasts
- VPAC Bench & Scenarios
- Supplier Strategic Planning & Opportunity Targeting
- Competitor Analysis

#### **Supplier Business Planning is Continuous**



#### **IHS Markit**

- Competitor & Market Assessment
- Legislative/Regulatory Impact
- Vehicle/Powertrain & Component Forecasts
- Opportunity Analysis

Supplier Business planning involves all facets of the suppliers organization:

Finance, Sales, Marketing, Design, Engineering, Supply Chain, Manufacturing, Logistics, Suppliers, Customers and Stakeholders.

Capability/

**Resource Planning** 

Plan

**Communication &** 

Execution

# **Engine Opportunity Targeting**



Supplier-specific opportunity targeting analysis given unique criteria:

- Sourcing Window
- Sourcing Structure
- Volume, technology, region and incumbent criteria

# **Top 10 Opportunities – 24 Months**

| E: Platform     | E: Program             | E: Model          | VP: Production<br>Nameplate | VP: Platform | VP: Program | 0K 10K | 20 | 0K | 30K | 40K | 50K | 60K | 70K     | Aver<br>80K    | age Vo<br>90k | olume<br>( 10 | 0K    | 110K | 120K                 | 130K | 140K | 150K   | 160K  | 170 | K   |
|-----------------|------------------------|-------------------|-----------------------------|--------------|-------------|--------|----|----|-----|-----|-----|-----|---------|----------------|---------------|---------------|-------|------|----------------------|------|------|--------|-------|-----|-----|
| S2G (HR)        | HR16DE (XH16)          | 1.6L 16V DOHC L4  | Sentra                      | CMF-C/D      | L21B        |        |    |    |     |     |     |     |         |                |               |               |       |      |                      |      |      |        | 166.9 | к●  |     |
| DURATEC35       | D33 TI-VCT             | 3.3L 24V DOHC V6  | Explorer                    | CD6          | U625        |        |    |    |     |     |     |     |         |                |               |               |       |      | <mark>-</mark> 117.: | 2K   |      |        |       |     |     |
| New ZR          | 2.0ZR                  | 2.0L 16V DOHC L4  | Corolla                     | GA-C         | 150B        |        |    |    |     |     |     |     |         |                |               |               |       |      |                      |      |      | • 14   | 18.9K |     |     |
| New ZR          | 2.0ZR                  | 2.0L 16V DOHC L4  | Corolla                     | GA-C         | 150B        |        |    |    |     |     |     |     |         |                |               |               |       |      |                      |      | •    | 141.9K |       |     |     |
| CSS-NGE/NDE     | (L3T) G45T-3           | 1.35L 12V DOHC L3 | Trax                        | VSS-F B/C    | 9BUC        |        |    |    |     |     |     |     |         |                | •             | 89.7K         |       |      |                      |      |      |        |       |     |     |
| DRAGON          | DRAGON 1.5             | 1.5L 12V DOHC L3  | Escape                      | C2           | CX482       |        |    |    |     |     |     |     |         |                | ● 86          | .6K           |       |      |                      |      |      |        |       |     |     |
| CUMMINS ISB     | ETJ                    | 6.7L 24V OHV L6   | 2500/3500                   | DS/DJ        | DK          |        |    |    |     |     |     |     |         |                |               |               |       |      | 115.2                | ۲    |      |        |       |     |     |
| GEN II/III/IV/V | L83 - GEN V - 5.3L AFM | 5.3L 16V OHV V8   | Silverado                   | VSS-T        | T1XC        |        |    |    |     |     |     |     |         | •              | 82.4K         | [             |       |      |                      |      |      |        |       |     |     |
| PENTASTAR       | 3.6L UPGRADE           | 3.6L 24V DOHC V6  | Grand Cherokee              | WK/WK(2)     | WL          |        |    |    |     |     |     |     |         |                |               | • 9           | 5.9K  |      |                      |      |      |        |       |     |     |
| VQ              | VQ35VD                 | 3.5L 24V DOHC V6  | Pathfinder                  | D            | P42R        |        |    |    |     |     |     |     |         | (              | 82.9H         | <             |       |      |                      |      |      |        |       |     |     |
|                 |                        |                   |                             |              |             | 201    | 9  |    |     | 202 | 0   |     | ź<br>En | 2021<br>gine S | tart of I     | Produc        | ction | 2022 |                      |      | 20   | 23     |       | 2   | 024 |

# **Top 10 Opportunities – 36 Months**

|                  |                   |                   |                 |              |             |    |      |     |     |      | A       | verage Vol       | ume       |       |         |         |       |       |
|------------------|-------------------|-------------------|-----------------|--------------|-------------|----|------|-----|-----|------|---------|------------------|-----------|-------|---------|---------|-------|-------|
|                  | E. Drogrom        | E. Madal          | VP: Production  | VD: Diotform |             | 0K | 10K  | 20K | 30K | 40K  | 50K     | 60K              | 70K       | 80K   | 90K     | 100K    | 110K  | 120K  |
| E. Plauolin      | E. Plogram        | E. Model          | Namepiale       | VP. Plation  | VP. Program |    |      |     |     |      |         |                  | 1         |       |         |         |       | 1     |
| O 4 NUL          |                   |                   | Q = = = t=      | N            |             |    |      |     |     |      |         |                  |           |       |         |         | 447.0 |       |
| G4-NU            | NU-2.UL           | 2.0L 16V DOHC L4  | Sonata          | N            | LF(2)       |    |      |     |     |      |         |                  |           |       |         |         | 117.3 | ĸ     |
|                  |                   |                   |                 |              |             |    |      |     |     |      |         |                  |           |       |         |         |       |       |
|                  |                   |                   |                 |              |             |    |      |     |     |      |         |                  |           |       |         |         |       |       |
| GR               | 7GR               | 3.5L 24V DOHC V6  | Sienna          | GA-K         | 580L(2)     |    |      |     |     |      |         |                  |           | 81.   | 3K      |         |       |       |
|                  |                   |                   |                 |              |             |    |      |     |     |      |         |                  |           |       |         |         |       |       |
|                  |                   |                   |                 |              |             |    |      |     |     |      |         |                  |           |       |         |         |       |       |
| WORLD ENGINE I 4 | ED6 - TIGER SHARK | 2.4L 16V SOHC L4  | Cherokee        | C-EVO/CUSW   | KI (2)      |    |      |     |     |      |         |                  |           |       | • 0     | 2 6K    |       |       |
|                  | M-AIR             | 2.42 100 00110 24 | Chiclonee       | 0 210/00011  | 1(2)        |    |      |     |     |      |         |                  |           |       | •••     | 2.01    |       |       |
|                  |                   |                   |                 |              |             |    |      |     |     |      |         |                  |           |       |         |         |       |       |
|                  |                   |                   |                 |              |             |    |      |     |     |      |         |                  |           |       |         |         |       |       |
| ELECTRIC         | Electric          | 0L 0V None None   | Model 3 CUV     | GEN III      | Model E     |    |      |     |     |      |         |                  |           | 75.9K |         |         |       |       |
|                  |                   |                   |                 |              |             |    |      |     |     |      |         |                  |           |       |         |         |       |       |
|                  |                   |                   |                 |              |             |    |      |     |     |      |         |                  |           |       |         |         |       |       |
| GR               | 7GR               | 3.5L 24V DOHC V6  | Highlander      | GA-K         | 440A(2)     |    |      |     |     |      |         |                  |           |       | • 87.5K |         |       |       |
|                  |                   |                   | 5               |              |             |    |      |     |     |      |         |                  |           |       |         |         |       |       |
|                  |                   |                   |                 |              |             |    |      |     |     |      |         |                  |           |       |         |         |       |       |
|                  |                   |                   |                 | 000          | DE (/O)     |    |      |     |     |      |         |                  |           |       |         |         |       |       |
| FB               | FB20_DI           | 2.0L 16V DOHC H4  | Outback         | SGP          | BF4(2)      |    |      |     |     |      |         |                  |           |       |         | • 97.4K |       |       |
|                  |                   |                   |                 |              |             | -  |      |     |     |      |         |                  |           |       |         |         |       |       |
|                  |                   |                   |                 |              |             |    |      |     |     |      |         |                  |           |       |         |         |       |       |
| DURATEC35        | D35 GTDI TI-VCT   | 3.5L 24V DOHC V6  | F-150 SuperCrew | Т3           | P702        |    |      |     |     |      |         | <del>0</del> 61. | 5K        |       |         |         |       |       |
|                  |                   |                   |                 |              |             |    |      |     |     |      |         |                  |           |       |         |         |       |       |
|                  |                   |                   |                 |              |             |    |      |     |     |      |         |                  |           |       |         |         |       |       |
| DRAGON           | DRAGON 1.5        | 1.5L 12V DOHC L3  | C-CUV           | C2           | CX430       |    |      |     |     |      | • 5     | 3 3K             |           |       |         |         |       |       |
|                  |                   |                   |                 |              |             |    |      |     |     |      |         |                  |           |       |         |         |       |       |
|                  |                   |                   |                 |              |             |    |      |     |     |      |         |                  |           |       |         |         |       |       |
|                  |                   |                   |                 |              |             |    |      |     |     |      |         |                  |           |       |         |         |       |       |
| G4-NU            | NU-2.0L           | 2.0L 16V DOHC L4  | Optima          | Ν            | JF(2)       |    |      |     |     |      |         | 61.              | 4K        |       |         |         |       |       |
|                  |                   |                   |                 |              |             |    |      |     |     |      |         |                  |           |       |         |         |       |       |
|                  |                   |                   |                 |              |             |    |      |     |     |      |         |                  |           |       |         |         |       |       |
| New-L (AP2)      | L15B MFI(AP2)     | 1.5L 16V DOHC L4  | Fit             | GSP(2)       | 2WF(2)      |    |      |     |     |      | • 47.8K |                  |           |       |         |         |       |       |
|                  |                   |                   |                 |              |             |    |      |     |     |      |         |                  |           |       |         |         |       |       |
|                  |                   |                   |                 |              |             |    | 2020 |     |     | 2021 |         | 21               | 022       |       | 20      | 23      |       | 2024  |
|                  |                   |                   |                 |              |             |    |      |     |     |      | Engine  | e Start of Pi    | roduction |       | 20      |         |       | 202-7 |
|                  |                   |                   |                 |              |             | 1  |      |     |     |      | ~       |                  |           |       |         |         |       |       |

# **Top 10 Opportunities – 48 Months**

| E: Platform | E: Program          | E: Model         | VP: Production<br>Nameplate | VP: Platform | VP: Program | 0K | 10K  | 20K | 30K     | 40K        | Average Vol<br>50K | lume<br>60K   | 70K  | 80K | 90K    | 100K    |  |  |
|-------------|---------------------|------------------|-----------------------------|--------------|-------------|----|------|-----|---------|------------|--------------------|---------------|------|-----|--------|---------|--|--|
| New-L (AP2) | L15B GDI(AP2)       | 1.5L 16V DOHC L4 | Civic                       | CCA          | 2SV(2)      |    |      |     |         |            |                    |               |      |     | ● 91.6 | šΚ      |  |  |
| J           | New-J30 turbo (AP5) | 3.0L 24V DOHC V6 | 8 Pilot                     | 2SL/2SF      | 2SF(2)      |    |      |     |         |            |                    | ● 58.3K       |      |     |        |         |  |  |
| G4-NU       | NU-1.8L             | 1.8L 16V DOHC L4 | Elantra                     | KP3          | AD(2)       |    |      |     | ● 65.6K |            |                    |               |      |     |        |         |  |  |
| AR          | 8AR-FTS             | 2.0L 16V DOHC L4 | RX                          | GA-K         | 760A(2)     |    |      |     | ● 68.4K |            |                    |               |      |     |        |         |  |  |
| New-K (AP4) | New-K20 GDI         | 2.0L 16V DOHC L4 | Civic                       | CCA          | 2SV(2)      |    |      |     | ● 64.8K |            |                    |               |      |     |        |         |  |  |
| New-K (AP4) | New-K20 GDI         | 2.0L 16V DOHC L4 | Civic                       | CCA          | 2SV(2)      |    |      |     |         |            |                    | <b>•</b> 61.1 | ĸ    |     |        |         |  |  |
| G4-NU       | NU-2.0L             | 2.0L 16V DOHC L4 | Optima                      | Ν            | JF(2)       |    |      |     |         |            |                    | 61.           | 4K   |     |        |         |  |  |
| New ZR      | 2.0ZR-HEV           | 2.0L 16V DOHC L4 | Prius                       | GA-C         | 690X        |    |      |     |         |            |                    | ● 60.4        | <    |     |        |         |  |  |
| SGE         | LFV                 | 1.5L 16V DOHC L4 | Malibu                      | VSS-F D/E    | 9DSC        |    |      |     |         |            |                    |               |      |     |        | ● 99.2K |  |  |
| G4-NU       | NU-1.8L             | 1.8L 16V DOHC L4 | Sorento                     | Ν            | UM(2)       |    |      |     |         |            | • 45.2K            |               |      |     |        |         |  |  |
|             |                     |                  |                             |              |             |    | 2021 |     |         | 2022<br>Er | ngine Start of P   | roduction     | 2023 |     |        | 2024    |  |  |

© 2016 IHS Markit

# **Solutions**

- Body-In-White Material Forecasts
- VPAC Bench & Scenarios
- Supplier Strategic Planning & Opportunity Targeting
- Competitor Analysis

# **Competitor/Technology Assessment**



# Critically important to understand;

- Competitors' Profile : Finance, footprint etc.
- Their product offerings and tech roadmap
- Differentiation strategy
- Local procurement and logistics
- M&A, Investment
- Market share and Customer share

In which area change will occur? → what's your plan?

### Summary

- Lack of volume growth in key markets shifts the focus to optimizing mix and focusing on high margin opportunities
- Unprecedented number of challenges facing the industry:
  - Global regulatory initiatives
  - Shifting of resources and energy towards non-traditional systems
  - Supplier consolidation and investment expectations of multi-regional strategies
- Three Disruptors: Electrification, Autonomous Vehicles & Shared Mobility
- Strategies to navigate the impending 'Cost Cliff'
  - Actionable Innovation, Vertical Integration and Risk Mitigation

#### **IHS Markit Customer Care:**

CustomerCare@ihsmarkit.com Americas: +1 800 IHS CARE (+1 800 447 2273) Europe, Middle East, and Africa: +44 (0) 1344 328 300 Asia and the Pacific Rim: +604 291 3600

IHS Markit<sup>™</sup> COPYRIGHT NOTICE AND DISCLAIMER © 2016 IHS Markit.

No portion of this presentation may be reproduced, reused, or otherwise distributed in any form without prior written consent of IHS Markit. Content reproduced or redistributed with IHS Markit permission must display IHS Markit legal notices and attributions of authorship. The information contained herein is from sources considered reliable, but its accuracy and completeness are not warranted, nor are the opinions and analyses that are based upon it, and to the extent permitted by law, IHS Markit shall not be liable for any errors or omissions or any loss, damage, or expense incurred by reliance on information or any statement contained herein. In particular, please note that no representation or warranty is given as to the achievement or reasonableness of, and no reliance should be placed on, any projections, forecasts, estimates, or assumptions, and, due to various risks and uncertainties, actual events and results may differ materially from forecasts and statements of belief noted herein. This presentation is not to be construed as legal or financial advice, and use of or reliance on any information in this publication is entirely at your own risk. IHS Markit and the IHS Markit logo are trademarks of IHS Markit.

