
Well Testing Applications

Superposition Time

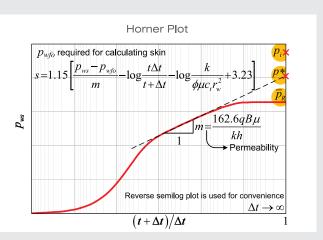
BUILDUP FUNDAMENTALS

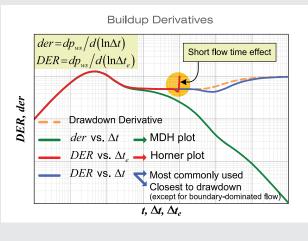
- BUILDUP ANALYSIS • Drawdown tests are often not analyzable because of
- poor data quality • Buildup tests have fewer data quality issues because
- the well is shut-in • Buildup analysis is treated as the superposition of flow

(q) and injection (θ -q) • Horner time is the simplified superposition time for radial flow

For gas, replace time with pseudo-time (t_a) , and pressure with pseudo-pressure (p_p) (see Well Testing Fundamentals, Fekete Poster - 2009

HORNER / MDH PLOT

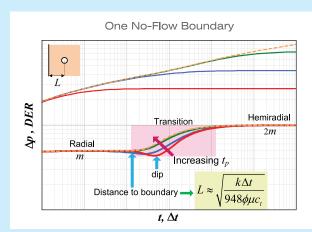

• Horner plot: graph of p_{WS} vs. $\log((t + \Delta t) / \Delta t)$ Extrapolation to infinite shut-in time yields p* Infinite reservoir: p*= p_i • Finite reservoir: $p^* \neq p_i \neq \overline{p}_R$ • If $p^* > p_i$, the Horner semi-log line is wrong, p_i is wrong, or there is a constant pressure boundary

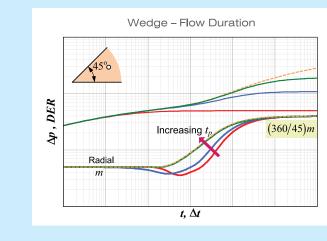

• **MDH plot**: graph of p_{ws} vs. log (Δt) Useful when producing time (t) is long • Analysis only valid when $\Delta t < 10\%$ of t

EQUIVALENT TIME

- Equivalent time (Δt_e) transforms *buildup time* into the equivalent drawdown time, so it can be matched to the standard drawdown type curves
- Maximum value of (Δt_e) is the producing time (t) • Superposition Equivalent Time is used when the flow rate has not been constant

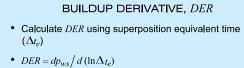
	Buildup	з Ті
VARYING RATES	Producing time	t (
 If production rates change significantly just before 	Shut-in time (MDH)	Δι
shut-in, superposition time (Σt) must be used instead of	Horner time	$\int (t$


Buildup Time Functions				
Producing time	<i>t</i> (constant)			
Shut-in time (MDH)	Δt (variable)			
Horner time	$(t + \Delta t) / \Delta t$			
Equivalent time (Δt_e)	$t\Delta t/(t+\Delta t)$			
Effective producing time	t_p (or t_c) = Q/q_{last}			
Superposition time (Σt)	$\sum_{1}^{n+1} \left\{ \frac{\Delta q_j}{q_n} \log(t + \Delta t - t_{j-1}) \right\}$			
Super-equivalent-time	$\sum_{1}^{n} \left\{ \frac{\Delta q_{j}}{q_{n}} \log \left(\frac{t + \Delta t - t_{j-1}}{t - t_{j-1}} \right) \right\} - \log \Delta t$			
Pseudo-time (gas only)	$t_a = (\mu c)_i \int_0^t (dt/(\mu c)_{ws})$			



 $t, \Delta t$

DER



Parallel Boundaries

0

BUILDUP (BU) **TYPE CURVES**

• Plot *DER* vs Δ_t (not Δ_{t_e}) on a log-log plot

			LEGEND		
ſ	DER		Drawdown		Δp
	DER	_	BU (short t_p)		Δp
	DER	_	BU (medium t_p)		Δp
	DER	—	BU (long t_p)	—	Δp

SHAPE OF BUILDUP DERIVATIVE, DER

- All buildup DER curves match drawdown curves EXACTLY
- Bounded Systems: During infinite-acting period, buildup DER matches drawdown derivative **EXACTLY**

One and Two No-Flow Boundaries:

- periods Transition lasts 2 log cycles
- For short flow duration, DER deviates during transition
- Time of deviation depends on distance to boundary (radius of investigation equation applies) DER dips below radial flow line. For two equidistant
- As t_n increases, dip disappears

- pseudo-radial flow $(360/\theta)m$

Parallel Boundaries:

Late-time linear flow half-slope is displaced from drawdown by factor of 2. Calculated channel width will be two times actual width

U-Shaped Boundaries

DER

End boundar

t, Δt

Bounded Reservoir

Increasing

 $t, \Delta t$

Two No-Flow Boundaries

t, Δt

Wedge – Angle

Increasin

Radia

Buildup matches

Drawdown

<u>ج</u>

2

2

Radia

m

Radia

m

Increasing t

1st boundary

 $\sqrt{\theta} \circ$

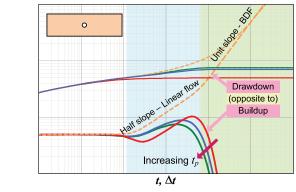
Radia

Boundary-dominated

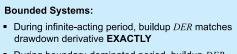
Drawdown

(opposite to)

Buildup


Pseudo-Radia

 $k\Delta t$


948*øµc*

360/*0*),

 2^{nd} boundary $L \approx$

Infinite-Acting Homogeneous Reservoir:

- boundaries, dip is deeper

• Wedge:

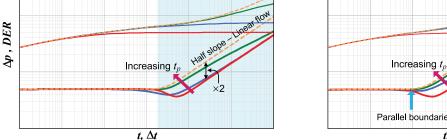
DER is similar to no-flow boundary DER transitions from infinite-acting radial flow, m, to

Horner time • For smoothly changing rates, a simplification called "effective producing time" (t_p or t_c) can be used • t_p honours two important criteria:

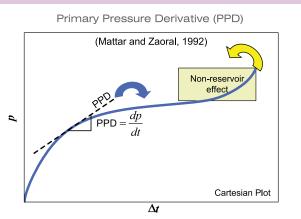
 It preserves material balance It uses the flow rate immediately prior to shut-in (NOT the average rate)

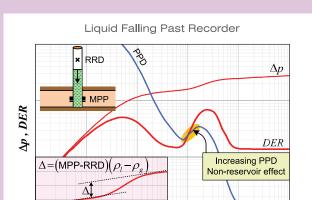
DATA VALIDATION / **ANOMALIES / ERRORS**

PRIMARY PRESSURE DERIVATIVE (PPD)


Cartesian coordinates) will ALWAYS be continuously

concave downward for a single phase fluid (except


• No matter how complex a reservoir is, a buildup (in


multilayer reservoirs with unequal p_i)

 Rate fluctuations that occurred a long time ago (more than two times the buildup duration) can be simplified similarly

Linear flow

Semilog Plot

DER

Å

DER

Ą

 Δt

Changing Wellbore Storage

 Δt

Wrong Shut-in

- Correct shut-in

— Late shut-in (or p_{wfo} too small)

- Early shut-in (or p_{wfo} too large)

Increasing WBS

— Decreasing WBS

• Reservoir effects cannot cause an increase in PPD. Therefore an increase in PPD indicates a non-reservoir effect • Wellbore and reservoir effects can be distinguished through the PPD

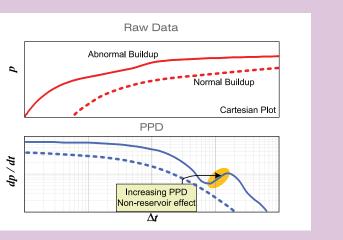
- Data preceding or following a segment of increasing PPD may be valid
- It is not practical to use PPD as a diagnostic for drawdown analysis because of rate changes and noisy measurements

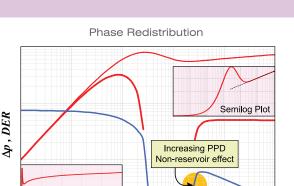
WELLBORE DYNAMICS

- Liquid falling past pressure recorders: When liquid interface goes past the recorders, it creates a unique signature
- Often visible as parallel lines on semilog plot Can occur any time
- When it occurs at late time, it is often mis-interpreted as a boundary
- Identified by increasing PPD
- Phase redistribution:
- Causes increase then decrease in wellbore pressure NOT related to location of recorders
- Characteristic hump always occurs at early time
- PPD goes negative before increasing
- Changing wellbore storage:
- Change from liquid to gas-dominated wellbore
- Changing gas compressibility as function of pressure (pseudo-time) Causes deviation from early time unit slope
- Theoretical model can be used to model phase redistribution

NEAR WELLBORE EFFECTS

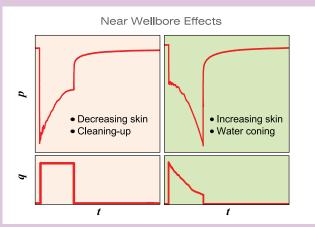
- Multi-phase flow
- Changing skin Near wellbore clean-up

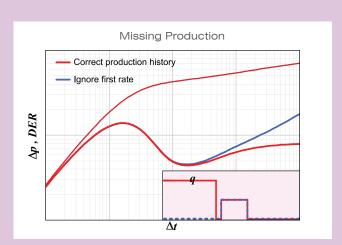

 decreasing skin
- Water coning
- Hydrate forming near sandface Increasing Retrograde condensation skin Perforation plugging

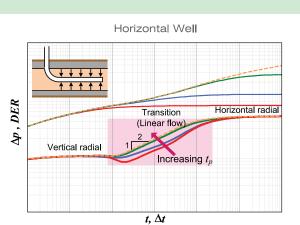

COMMON ERRORS

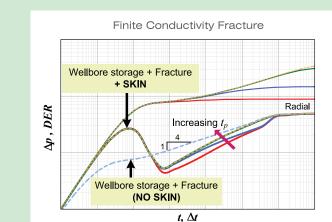
- Wrong shut-in:
- Wrong Δt : pressure and rate not synchronized Wrong p_{wfo}: noisy pressures at time of shut-in

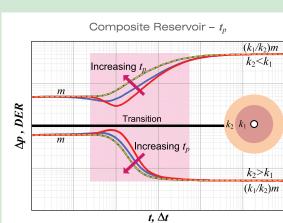
Little effect on derivative

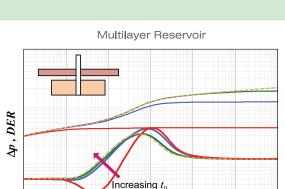

- Missing production:
- Ignoring hydraulic fracture injection/clean-up flow Ignoring production history preceding deployment of pressure gauge
- Wrong final rate: The production is often a measured volume, not a rate. When the well is shut-in part way through the day, the reported average daily rate changes, whereas the actual rate does not

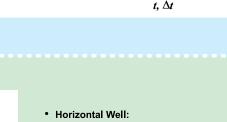





 Δt


Cartesian Plo





t, Δt

Increasing

• If all flow regimes are evident, k_x , k_y and k_z can be determined individually

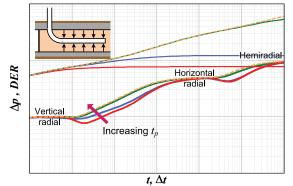
- Effective length L_e can be determined if k_v is assumed (often equal to $k_{\rm r}$) After end of vertical radial flow, horizontal well
- behavior is very similar to infinite-conductivity fracture \rightarrow Replace L_e by $2x_f$, and add a geometric skin due to flow convergence into horizontal well
- Horizontal well with multiple transverse infinite-conductivity fractures → Initially behaves like a single large fracture,
- equal in area to the sum of the individual fractures → After interference between the fractures,
- behaves like a large stimulated area Finite conductivity vertical fracture intersected by horizontal well does NOT result in bilinear flow

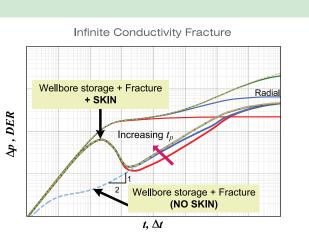
• Hydraulic Fracture (Vertical Well):

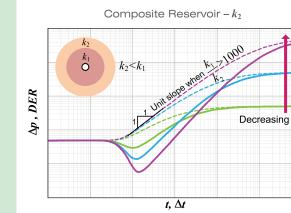
- Bilinear flow Finite conductivity fracture Wellbore storage hump is evident when fracture has a skin (choke skin or fracture-face skin). Easily
- misinterpreted as radial flow with complex reservoir geometry Sometimes difficult to differentiate between infinite
- and finite conductivity when skin is present

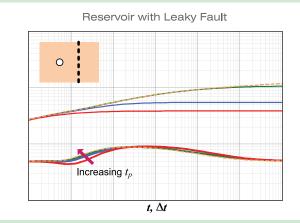
Composite Reservoir:

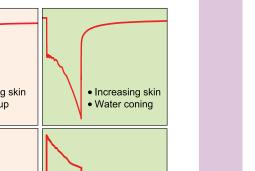
- DER similar to no-flow boundary • *DER* transitions from one radial flow, *m*, to another radial flow, $(k_1/k_2)m$
- Duration of transition depends on k₂ to k₁ contrast • Dip in *DER* during transition increases with k_1/k_2 As t_p increases, dip disappears

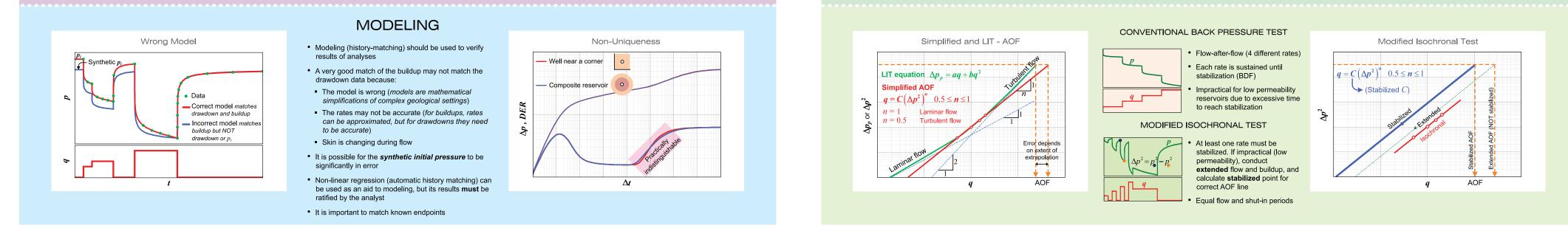

Slant Well


 $t, \Delta t$


 Multilayer Cylindrical Reservoir Shape of derivative depends on: p_i, k, h, ϕ, s and r_e of each layer


Increasing t


Horizontal Well - One No-Flow Boundary



Copyrigh © 2017 IHS Markit "[®] is a trademark, the property of its respective owners", Schlumberger

Reference: Well Testing Fundamentals, Fekete Poster - 2009

Nomenclature

a b B C C C der DE h k L m n p p^* p_i		$\begin{array}{c} P_p \\ \overline{P}_R \\ P_{wfo} \\ q \\ q \\ last \\ Q \\ r_w \\ r_e \\ s \\ t \\ t_a \\ t_c \\ t_p \\ W \\ \Delta t \\ \Delta t_e \\ \Sigma t \end{array}$	pseudo-pressure average reservoir pressure last flowing well pressure before shut-in flow rate final flow rate before shut-in cumulative production wellbore radius external reservoir radius skin time pseudo-time producing time or effective producing time; same as t_p producing time or effective producing time; same as t_c channel width shut-in time equivalent time of shut-in superposition time	$\Delta \phi \\ \mu \\ \theta \\ \rho_g \\ \rho_l $ Sull <i>i j</i> , <i>n wf ws</i>	eek symbols difference porosity viscosity wedge angle gas density liquid density oscripts initial variable counter flowing well shut-in well	AbbreviationsAOFabsolute open flowBDFboundary-dominated flowBUbuildupCCTclosed chamber testLITlaminar inertial turbulentMDHMiller, Dyes and HutchinsonMPPmid point of perforationsPITAperforation inflow test analysisPPDprimary pressure derivativeRFT®repeat formation testerRRDrecorder run depthWBSwellbore storage
---	--	--	--	---	---	---

Well Testing Applications

All analyses described can be performed using IHS Markit's Well Testing software WellTest.

ihsmarkit.com