PEP Report 265B

Bio-Based Polymers

Susan Bell, Sr. Principal Analyst

Abstract

Bio-based polymers are defined as material where at least a portion of the polymer consists of material produced from renewable raw materials. For example, bio-based polymers may be produced from corn or sugar cane. The remaining portion of the polymers may be from fossil fuel–based carbon. Bio-based polymers have generally lower CO₂ footprint and are associated with the concept of sustainability. The total bio-based polymer market represents a tiny portion—about 1%—of the global polymer market. However, the market for bio-based polymers is expected to grow faster with growing usage in the beverage packaging industry, cost reduction, increasing government support for adopting bio-based materials, and rising consumer acceptance.

The largest potential market for bio-based biodegradable polymer is in the packaging industry. Consumption of biodegradable polymer is expected to grow globally at an average annual rate of 9% between 2017 and 2022. Polylactic acid (PLA) and polyhydroxyalkanoates (PHAs) are both major bio-based biodegradable plastics. Most of the PLA produced is used for packaging. PHAs are versatile biodegradable bio-based polymers that can be used in a wide range of applications. Poor production economics have limited commercialization of PHAs.

Conventional bottle-grade polyethylene terephthalate (PET) resin is used to produce beverage bottles. The plastic bottle beverage industry has been under intense pressure over the amount of PET produced and the solid waste generated from discarded conventional PET-based bottles. Responsible and sustainable PET consumption has been a major goal. Feedstocks for PET are petroleum-based. To achieve sustainability, bio-based feedstocks for PET production are being commercialized.

This report examines production technologies for PLA and its monomer lactic acid, PHA, and bio-based PET, and evaluates the process economics for producing the polymers and lactic acid. This report will be of value to those companies engaging in the production of bio-based polymers and conventional petroleum-derived feedstock-based polymers.
Contents

1. **Introduction**
2. **Summary**
 - Introduction
 - Industrial aspects
 - Technical aspects
 - Lactic acid production
 - Polylactic acid (PLA) production
 - Polyhydroxyalkanoates (PHAs) production
 - Bio-based polyethylene terephthalate (PET) production
3. **Economic aspects**
 - Lactic acid
 - Bio-based polymers
 - Polylactic acid and polyhydroxyalkanoate
 - Bio-based polyethylene terephthalate (PET)
4. **Industry status**
 - Introduction
 - Polylactic acid (PLA)
 - Cargill
 - BASF SE
 - Corbion (Purac)
 - Galactic
 - NatureWorks
 - Plaxica
 - Synbra Technology bv
 - Total Corbion PLA
 - Uhde Inventa-Fischer
5. **Polyhydroxyalkanoates (PHAs)**
6. **Bio-based polyethylene terephthalate (PET)**

1 Introduction

2 Summary

2.1 Introduction

2.2 Industrial aspects

2.3 Technical aspects

- Lactic acid production
- Polylactic acid (PLA) production
- Polyhydroxyalkanoates (PHAs) production
- Bio-based polyethylene terephthalate (PET) production

2.4 Economic aspects

- Lactic acid
- Bio-based polymers
- Polylactic acid and polyhydroxyalkanoate
- Bio-based polyethylene terephthalate (PET)
- Summary of production costs

3 Industry status

3.1 Introduction

3.2 Polylactic acid (PLA)

- Cargill
- BASF SE
- Corbion (Purac)
- Galactic
- NatureWorks
- Plaxica
- Synbra Technology bv
- Total Corbion PLA
- Uhde Inventa-Fischer

3.3 Polyhydroxyalkanoates (PHAs)

3.4 Bio-based polyethylene terephthalate (PET)

4 Technology

4.1 Polylactic acid (PLA)

- Lactic acid production
- Lactic acid
- Lactic acid production by chemical synthesis
- Lactic acid production by fermentation
- PLA production
- Types of PLA
- Lactide synthesis
- Lactide polymerization
- Sustainability

4.2 Polyhydroxyalkanoates (PHAs)

- Introduction
- Chemistry
- PHA production
- Metabolic pathways
- Microorganisms
- Carbon sources
- Fermentation
- PHA recovery
Bio-based polyethylene terephthalate (PET) 64
Introduction 64
Bio-based ethylene glycol 65
Bio-based purified terephthalic acid (PTA) 67
Bio-based para-xylene production 68
Purified terephthalic acid production from para-xylene 70
Polyethylene terephthalate (PET) production 72

5 Polylactic acid 74
Introduction 74
Lactic acid production 74
Process description 74
Section 100—Fermentation 85
Section 200—Biomass separation and lactic acid recovery 86
Section 300—Lactic acid purification 86
Process discussion 87
Plant design capacity 87
Plant location 87
Yeast fermentation 87
Simple defined media 87
Lactic acid recovery 88
Material of construction 89
Waste treatment 89
Cost estimate 89
Capital costs 89
L-lactic acid production costs 93
Comparison of L-lactic acid production costs 95

Polylactic acid production 97
Process description 97
Section 100—Lactide production and purification 104
Section 200—Lactide polymerization 105
Process discussion 106
Plant design capacity 106
Storage 106
Lactide production 106
Lactide purification 106
Polymerization 107
Demonomerization 107
Granulation and crystallization 108
Material of construction 108
Waste treatment 108
Cost estimate 109
Capital costs 109
PLA production costs 112

6 Polyhydroxyalkanoate 115
Introduction 115
PHA production 115
Process description 115
Section 100—Fermentation 121
Section 200—PHA recovery 121
Process discussion 122
Plant design capacity 122
Carbon substrate 122
Bacterial fermentation 123
MCL-PHA recovery 123
Material of construction 124
Waste treatment 124
Cost estimate 124
Capital costs 124
MCL-PHA production costs 128

7 Bio-based polyethylene terephthalate (PET) 130
Introduction 130
Bio-based PET production 130
Process description 130
Section 100—Ethanol production 131
Section 200—Ethylene production 131
Section 300—Ethylene glycol production 131
Section 400—p-Xylene production 132
Section 500—Purified terephthalic acid (PTA) production 133
Section 600—Bottle-grade polyethylene terephthalate (PET) production 134
Process discussion 135
Plant design capacity 135
Process selection 135
Onstream factor 136
Utilities consumption 136
Offsites storage 137
Waste treatment 137
Cost estimate 140

Appendix A—Cited references 145
Appendix B—Patents 158
Appendix C—Patent references by company 168
Appendix D—Design and cost basis 171
Design conditions 172
Site location 172
Facility site basis 172
Cost bases 172
Capital Investment 172
Project construction timing 174
Available utilities 174
Production costs 175
Effect of operating level on production costs 175

Appendix E—Process flow diagrams 177

Tables
Table 2.1 L-Lactic acid production costs 19
Table 2.2 Polylactic acid and polyhydroxyalkanoate production costs 20
Table 2.3 Commodity polymer prices 20
Table 2.4 Bio-based PET and conventional PET production costs 21
Table 3.1 PLA production capacity 26
Table 4.1 Select properties of lactic acid 33
Table 4.2 Typical properties of commercial polylactic acid 42
Table 4.3 Polylactic acid properties 46
Table 4.3 Physical properties of polylactic acid 52
Table 4.4 Commercial PHAs 55
Table 4.5 Physical properties of PHAs 55
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6</td>
<td>PHA production by fed-batch mode fermentation</td>
<td>59</td>
</tr>
<tr>
<td>4.7</td>
<td>Carbon substrates used for commercial PHA</td>
<td>60</td>
</tr>
<tr>
<td>4.8</td>
<td>Comparison of methods for PHA recovery</td>
<td>63</td>
</tr>
<tr>
<td>5.1</td>
<td>L-Lactic acid by a process similar to Cargill’s low-pH technology—Design bases</td>
<td>75</td>
</tr>
<tr>
<td>5.2</td>
<td>L-Lactic acid by a process similar to Cargill’s yeast fermentation—Major stream flows</td>
<td>76</td>
</tr>
<tr>
<td>5.3</td>
<td>L-Lactic acid by a process similar to Cargill’s yeast fermentation—Major equipment</td>
<td>82</td>
</tr>
<tr>
<td>5.4</td>
<td>L-Lactic acid by a process similar to Cargill’s yeast fermentation—Utilities summary</td>
<td>85</td>
</tr>
<tr>
<td>5.5</td>
<td>Summary of major waste streams</td>
<td>89</td>
</tr>
<tr>
<td>5.6</td>
<td>L-Lactic acid by a process similar to Cargill’s yeast fermentation—Total capital investment</td>
<td>92</td>
</tr>
<tr>
<td>5.7</td>
<td>L-Lactic acid by a process similar to Cargill’s yeast fermentation—Capital investment by section</td>
<td>93</td>
</tr>
<tr>
<td>5.8</td>
<td>L-Lactic acid by a process similar to Cargill’s yeast fermentation—Production costs</td>
<td>94</td>
</tr>
<tr>
<td>5.9</td>
<td>L-Lactic acid by a conventional bacterial fermentation process—Production costs</td>
<td>96</td>
</tr>
<tr>
<td>5.10</td>
<td>PLA by a process similar to Uhde Inventa-Fischer PLAneo® process—Design bases</td>
<td>98</td>
</tr>
<tr>
<td>5.11</td>
<td>PLA by a process similar to Uhde Inventa-Fischer PLAneo® process—Major stream flows</td>
<td>99</td>
</tr>
<tr>
<td>5.12</td>
<td>PLA by a process similar to Uhde Inventa-Fischer PLAneo® process—Major equipment</td>
<td>101</td>
</tr>
<tr>
<td>5.13</td>
<td>PLA by a process similar to Uhde Inventa-Fischer PLAneo® process—Utilities summary</td>
<td>104</td>
</tr>
<tr>
<td>5.14</td>
<td>Summary of major waste streams</td>
<td>108</td>
</tr>
<tr>
<td>5.15</td>
<td>PLA by a process similar to Uhde Inventa-Fischer PLAneo® process—Total capital investment</td>
<td>111</td>
</tr>
<tr>
<td>5.16</td>
<td>PLA by a process similar to Uhde Inventa-Fischer PLAneo® process—Capital investment by section</td>
<td>112</td>
</tr>
<tr>
<td>5.17</td>
<td>PLA by a process similar to Uhde Inventa-Fischer PLAneo® process—Production costs</td>
<td>113</td>
</tr>
<tr>
<td>6.1</td>
<td>MCL-PHA production by bacterial fermentation with canola oil as the carbon source—Design bases</td>
<td>116</td>
</tr>
<tr>
<td>6.2</td>
<td>MCL-PHA production by bacterial fermentation with canola oil as the carbon source—Major stream flows</td>
<td>117</td>
</tr>
<tr>
<td>6.3</td>
<td>MCL-PHA production by bacterial fermentation with canola oil as the carbon source—Major equipment</td>
<td>119</td>
</tr>
<tr>
<td>6.4</td>
<td>MCL-PHA production by bacterial fermentation with canola oil as the carbon source—Utilities summary</td>
<td>121</td>
</tr>
<tr>
<td>6.5</td>
<td>Typical canola oil composition</td>
<td>123</td>
</tr>
<tr>
<td>6.6</td>
<td>Summary of major waste streams</td>
<td>124</td>
</tr>
<tr>
<td>6.7</td>
<td>MCL-PHA production by bacterial fermentation with canola oil as the carbon source—Total capital investment</td>
<td>127</td>
</tr>
<tr>
<td>6.8</td>
<td>MCL-PHA production by bacterial fermentation with canola oil as the carbon source—Capital investment by section</td>
<td>128</td>
</tr>
<tr>
<td>6.9</td>
<td>MCL-PHA production by bacterial fermentation with canola oil as the carbon source—Production costs</td>
<td>129</td>
</tr>
<tr>
<td>7.1</td>
<td>Bio-based PET production from corn—Utilities summary</td>
<td>136</td>
</tr>
<tr>
<td>7.2</td>
<td>Summary of major waste streams</td>
<td>137</td>
</tr>
<tr>
<td>7.3</td>
<td>Bio-based PET production from corn by an integrated process (IV=0.82 dL/g)—Capital investment</td>
<td>140</td>
</tr>
<tr>
<td>7.4</td>
<td>Bio-based PET production from corn by an integrated process (IV=0.82 dL/g)—Variable costs</td>
<td>141</td>
</tr>
<tr>
<td>7.5</td>
<td>Bio-based PET production from corn by an integrated process (IV=0.82 dL/g)—Production costs</td>
<td>142</td>
</tr>
<tr>
<td>7.6</td>
<td>PET by a process similar to INVISTA CP process and Polymetrix EcoSphere™ SSP process (IV 0.82 dL/g) ¾ Variable costs</td>
<td>143</td>
</tr>
<tr>
<td>7.7</td>
<td>PET by a process similar to INVISTA CP process and Polymetrix EcoSphere™ SSP process (IV 0.82 dL/g)—Production costs</td>
<td>144</td>
</tr>
</tbody>
</table>
Figures

Figure 2.1 World production capacity of bio-based polymers
Figure 2.2 Lactic acid production process by Cargill’s lactic acid process with yeast fermentation
Figure 2.3 Uhde Inventa-Fischer PLAneo® process block diagram
Figure 2.4 MCL-PHA production process block diagram
Figure 2.5 Corn to bio-based PET value chain
Figure 2.6 Bottle-grade bio-based PET from corn input and output
Figure 2.7 Process economics summary
Figure 3.1 World production capacity of bio-based polymers
Figure 4.1 Lactic acid enantiomers
Figure 4.2 Lactic acid production from corn
Figure 4.3 Lactate production by Embden-Meyerhof-Parnas (EMP) pathway
Figure 4.4 Lactic acid production process by bacterial fermentation
Figure 4.5 Lactic acid production process by Corbion’s gypsum-free lactic acid process
Figure 4.6 Lactic acid production pathway by modified yeast
Figure 4.7 Lactic acid production process by Cargill's lactic acid process with yeast fermentation
Figure 4.8 First-generation PLA production process
Figure 4.9 Routes to polylactic acid
Figure 4.10 Lactide enantiomers
Figure 4.11 Depolymerization reactor from Hitachi’s patent US 20100249362
Figure 4.12 Depolymerization reactor from Companhia Refinadora Da Amazonia’s patent US 20130267675
Figure 4.13 Uhde Inventa-Fischer PLAneo® process block diagram
Figure 4.14 PLA process with Optipure®
Figure 4.15 Plaxica’s D-lactate production process based on US 20150152449
Figure 4.16 Tubular lactide polymerization reactor from Companhia Refinadora Da Amazonia’s patent US 20130267675
Figure 4.17 Polymerization system from Uhde’s patent US 8399602
Figure 4.18 PLA tactivities
Figure 4.19 Basic structure of PHA
Figure 4.20 Metabolic pathways to PHB and PHBV
Figure 4.21 Metabolic pathways to MCL-PHA
Figure 4.22 Biomass conversion to VFA by anaerobic digestion
Figure 4.23 Structure of polyethylene terephthalate (PET)
Figure 4.24 Bio-based ethylene glycol via bio-based ethanol
Figure 4.25 Ethylene production from ethanol by adiabatic fixed-bed catalytic dehydration
Figure 4.26 Ethylene glycol production from ethylene and oxygen by Shell OMEGA® process
Figure 4.27 Bio-based ethylene glycol via Haldor Topsoe’s Monosaccharide Industrial Cracker (MOSAIK™) process
Figure 4.28 Bio-based purified terephthalic acid (PTA) via bio-based para-xylene
Figure 4.29 Bio-based para-xylene by Gevo process
Figure 4.30 Bio-based para-xylene by Virent process
Figure 4.31 Bio-based para-xylene by Anellotech process
Figure 4.32 Purified terephthalic acid production from para-xylene by INVISTA process
Figure 4.33 Bottle-grade PET production using the Integrated INVISTA continuous polymerization PET/Polymetrix (Buhler) EcoSphere™ SSP process
Figure 5.1 Polymer-grade lactic acid—Fermentation section
Figure 5.1 Polymer-grade lactic acid—Biomass separation and lactic acid recovery section 179
Figure 5.1 Polymer-grade lactic acid—Purification section 180
Figure 6.1 Polymer-grade lactic acid—Purification section 181
Figure 5.2 PLA by a process similar to Uhde Inventa-Fischer PLAneo® process—Lactide production and purification section 182
Figure 5.2 PLA by a process similar to Uhde Inventa-Fischer PLAneo® process—Lactide polymerization section 183
Figure 6.1 MCL-PHA by bacterial fermentation with canola oil as the carbon source—Fermentation section 184
Figure 6.1 MCL-PHA by bacterial fermentation with canola oil as the carbon source—PHA recovery section 185