

AUTOMOTIVE

Autonomous Driving

8 September 2016 | Detroit, Michigan

Jeremy Carlson, Principal Analyst

+1 310 524 4065, jeremy.carlson@ihsmarkit.com

© 2016 IHS Markit. All Rights Reserved.

Contents

TRENDS IN TECHNOLOGY

Sensors
Deep learning
Mapping and localization

MARKET DYNAMICS

Regulation
Automaker activity
Mobility
Mergers and acquisitions

Trends in technology

Sensors

New sensor technologies extend automated driving functionality and increase electronics content in the vehicle.

LIDAR

Valeo + Ibeo

Quanergy,
TriLumina,
LeddarTech and
solid-state sensors

Velodyne investment by Ford and Baidu

77 GHz SRR

Delphi

Bosch

Current use case and forecast volumes evolve into 79 GHz SRR segment

Trifocal camera

ZF TRW Delphi Valeo

Volvo XC90

Tesla Model S update

Central ADAS ECU

Delphi + Audi Autoliv + Mercedes

Delphi + Mobileye

BMW + Intel?

New generations of sensors attract investment, will change in-vehicle architectures and computing, and introduce new high-tech suppliers.

Deep learning

High-performance computing advances are coming soon to automotive.

NVIDIA

Industry leader with multiple choices

DGX-1 designed for deep learning

Widely used hardware but uphill battle to get inside production cars

Mobileye

Industry leader in vision systems

Semantic abstraction to define problems and train solutions

Fleet learning with Tesla and common in production cars Intel

Nervana Systems USD400-mil. acquisition

Nervana Neon framework

Xeon Phi processors with Nervana accelerator chip expected in 2017

Partnerships

Delphi + Mobileye BMW + Baidu Denso + Morpho

> NXP CEVA Xilinx Synopsys Cadence

Deep learning enabling artificial intelligence will introduce new approaches to system design and management over time.

Mapping and localization

Many forms of localization will support automated and autonomous driving.

HERE | TomTom

High-definition maps with LIDAR sensors

Multiple layers of content

Popular and incumbent suppliers

Google

High-definition maps with LIDAR sensors

Multiple layers of content

Content layers

Relative localization to position the vehicle in space

Crowd-sourced data overlaid on base map

Mobileye REM and others

Startups

Civil Maps

Mapbox

NVIDIA

Uber

Dynamic Map Planning Co. (Japan)

Map data and content layers must coexist and complement each other. Crowd-sourcing and sharing are critical to successful scale.

Market dynamics

Regulation

Regulatory activity is already influential, but it becomes one of the most important market forces for ADAS.

NCAP

US NCAP adding 7+ new ADAS in 2018

to move forward on new AEB features

Little to no activity from other countries

Voluntary agreements

US commitment for standard AEB by 2022

Will effectively make
AEB standard
everywhere in a few
years, with rare local
model exceptions

What's next?

Standards and guidance

ISO 26262 + ASIL

New automated vehicle guidelines expected in US

Steady progress on cybersecurity and driver distraction guidance in US

Sharing economy

Open question everywhere today

Even China allowed ride-hailing services in legal grey zone

Regulation likely to be defined by the current market

Guidance will shape the future of automotive technology. Regulatory decisions will impact how the sharing economy evolves.

Automakers

OEMs racing to deploy new tech via myriad strategies, as gap between luxury and mass market narrows and startups challenge perennial luxury leaders.

Luxury leaders

Volvo XC90/S90 BMW 7 Series Tesla Model S

2017 Mercedes E 2017 Audi A8 Tesla

Autopilot 2.0 coming

Standard hardware?
Trifocal camera
1 x front radar
4 x corner radar
+ OTA update

Taking algorithms further in-house

Mass market

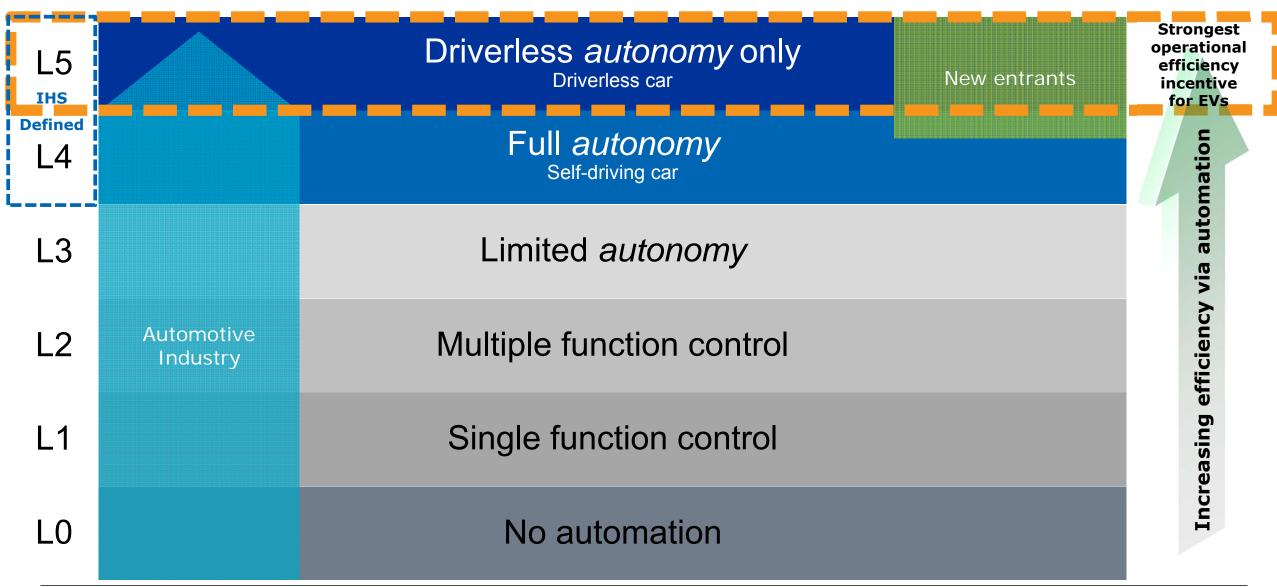
Still mostly packages of ADAS options but moving forward

Nissan Piloted Drive roadmap to 2020

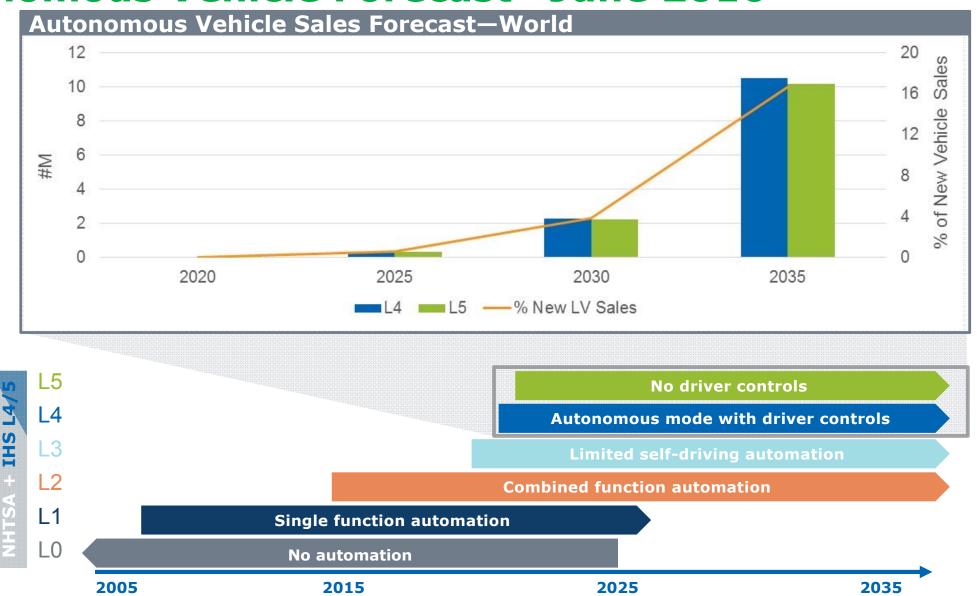
Startups

Atieva

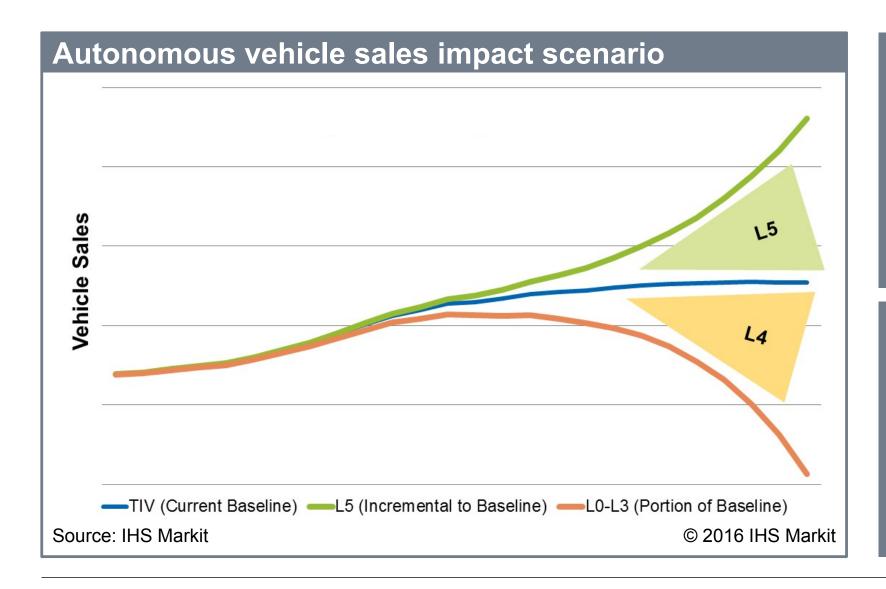
Faraday Future


NextEV

LeEco

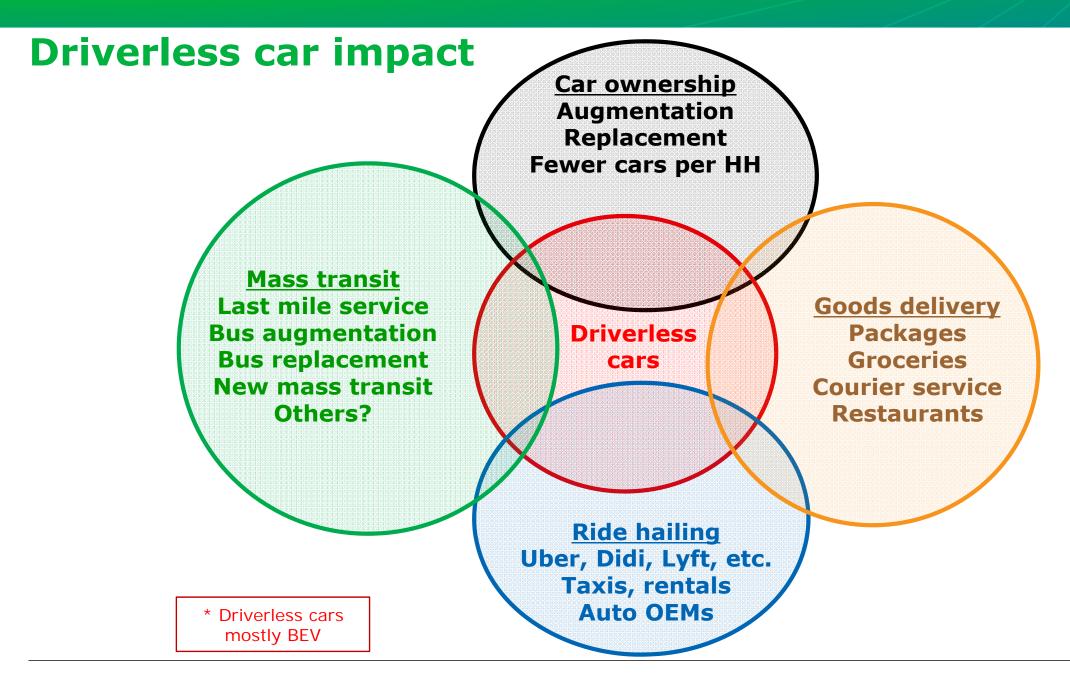

Karma

Deployment of automated driving tech is one of the most strategic decisions an OEM faces, with regulation and evolving mobility also major factors.


Automation evolving

Autonomous Vehicle Forecast—June 2016

Autonomy scenario: Industry impact visualized


As autonomous vehicles arrive, the market impact is split between:

- 1. Replacing or updating current forecast volumes
- 2. Adding incremental volume **beyond current** forecast

Autonomous vehicles can broadly correlate to mobility service models:

L4 – Car sharing

L5 – Ride hailing

Mobility

New mobility services are evolving quickly and challenging traditional tech development, market deployment, and consumer exposure.

Uber

Determined and acting quickly

Acquire and deploy plus shed losses

Uber + Volvo Uber + Toyota Uber + Otto **Ride-hailing**

Didi wins in China

Daimler merging MyTaxi + Hailo

VW + Gett

GM + Lyft

Delphi in Singapore

Car sharing

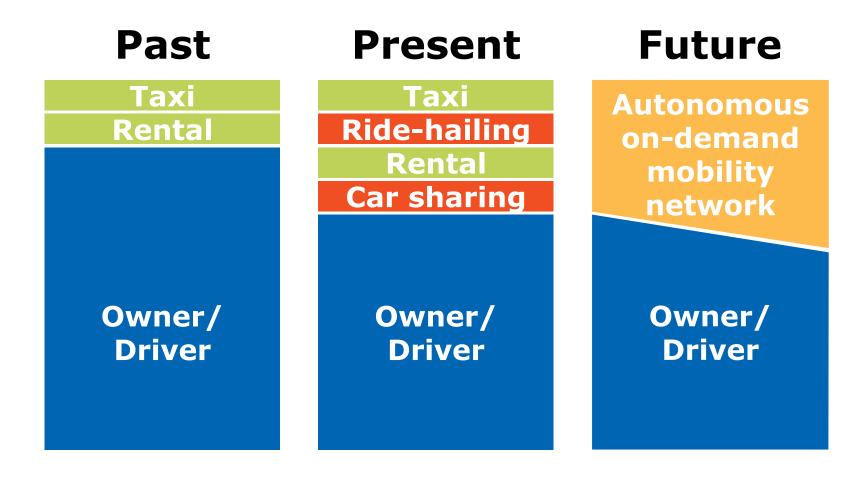
Smaller fleets but consistent users and often profitable

Rental car companies adding new tier of service

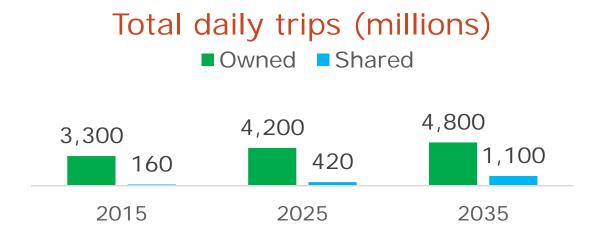
OEMs starting their own services

Automakers

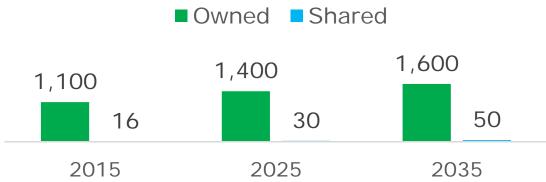
Ford ____


BMW iNext

Uber XC90


Chevrolet Bolt

OEMs and suppliers are investing heavily to understand the market, seize opportunities, and capture early market share that can be adapted later.


Car-based urban mobility is reshaping transportation

Where we are going: Scenario

Owned parc	1.1B	1.4B	1.6B
Average trips/day	3	3±	3±
Total trips/day	3.3B	4.2B	4.8B

Shared parc	16M	30M	50M
Average trips/day	10	14+	22+
Total trips/day	160M	420M	1,100M

Driverless car mobility scales extremely well compared with current cars. Smaller fleets operate efficiently and make mobility available to more people.

Mergers and acquisitions

Supply chain and ecosystem consolidation plus mobility services are fueling partnerships and M&A activity—and new players are coming.

Didi + Uber China

Most significant consolidation in mobility to date

Good for Didi & Uber

Negative for drivers and users because of reduced competition and fewer subsidies **Suppliers**

Uber + Otto

ZF + TRW + Ibeo

Delphi + Ottomatika

Freescale + Cognivue

Lear + Arada

Automakers

Ford co-lead investor in Velodyne

Tesla + Solar City

GM + Cruise GM interest in Lyft?

German OEMs investing in mobility

Tech companies

Baidu co-lead investor in Velodyne

Intel + Itseez
Intel + Nervana

Samsung interest in Magneti Marelli?

Changes in the supply chain and in consumer-facing markets will continue to force the industry to rethink and reposition within a changing landscape.

Summary

Vehicle technology evolves quickly, but complexity and deep learning change the way systems are designed.

Crowd-sourced map and OEM-owned driving data will further increase the value of connectivity and update-able hardware.

Technology deployment happens more quickly than ever.

Planning becomes even more important.

Mobility services will change how automakers approach the market, plan products, and position their brand.

Strategic investments and acquisitions help secure valuable opportunities in a rapidly evolving transportation industry.

THANK YOU!

DANKE

ありがとうございました

MERCI

謝謝

GRAZIE

감사합니다

GRACIAS

DANK U WEL

OBRIGADO

TAKK

धन्यवाद

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com

Americas: +1 800 IHS CARE (+1 800 447 2273)

Europe, Middle East, and Africa: +44 (0) 1344 328 300

Asia and the Pacific Rim: +604 291 3600

IHS Markit™ COPYRIGHT NOTICE AND DISCLAIMER © 2016 IHS Markit.

No portion of this presentation may be reproduced, reused, or otherwise distributed in any form without prior written consent of IHS Markit. Content reproduced or redistributed with IHS Markit permission must display IHS Markit legal notices and attributions of authorship. The information contained herein is from sources considered reliable, but its accuracy and completeness are not warranted, nor are the opinions and analyses that are based upon it, and to the extent permitted by law, IHS Markit shall not be liable for any errors or omissions or any loss, damage, or expense incurred by reliance on information or any statement contained herein. In particular, please note that no representation or warranty is given as to the achievement or reasonableness of, and no reliance should be placed on, any projections, forecasts, estimates, or assumptions, and, due to various risks and uncertainties, actual events and results may differ materially from forecasts and statements of belief noted herein. This presentation is not to be construed as legal or financial advice, and use of or reliance on any information in this publication is entirely at your own risk. IHS Markit and the IHS Markit logo are trademarks of IHS Markit.

Medium and heavy commercial vehicles (MHCVs)

Automated driving technology will also have significant impact on MHCVs.

European leaders

Daimler Freightliner & Future Truck 2025

Volvo, Scania

All have strong light vehicle ADAS portfolios to leverage

Uber joins the game?

Japan

NEDO 2013 platoon demonstration

Isuzu-Hino collaboration result

Pilot program possible in FY 2018

2020 Olympics?

Automated, not autonomous

Will require driver supervision of operation and freight even if platooning

Driver likely required for first and last mile

Efficiency benefits are still realized

Outlook

Automated driving as early as 2022

Likely most popular in US and Europe

Can help address driver shortages by repositioning job as high-tech

Operational and logistics efficiencies will transform transportation of goods.