Abstract

This report consolidates and updates the IHS Chemical Process Economics Program’s technical and economic analyses of propylene impact copolymer manufacturing technologies from 2010 to the present. The current global production of over 75 million metric tons polypropylene (PP) per year is forecast to increase by about 19–20% over the next four to five years. Braskem, LyondellBasell, and ExxonMobil are the main producers of PP in the Americas. Total is the largest producer of PP in Europe, and Reliance produces similar quantities of PP in India. Sinopec (China Petroleum & Chemical Corporation) is by far the leading producer of PP in Asia. Modern world-scale PP plants operate with single train capacities of about 250,000 to 500,000 tons per year.

Development of Ziegler-Natta catalysts in the 1950s and beyond enabled commercial production of stereoregular, isotactic polypropylene that is lightweight, thermoplastic, and has relatively high tensile strength, rigidity, and melting point. When a comonomer such as ethylene is included in the polymerization process, very high toughness and resistance to impact can be achieved. Polypropylene impact copolymers are used in diverse applications including automotive parts, pipe applications, household and food containers, toys, and appliance parts. The technologies and economics involved in producing ethylene-propylene impact copolymers are the subject of this report.

The PP processes are differentiated most by the phase of the polymerization reaction medium and the reactor design. Impact copolymer is produced in two chemical steps in two or more reactors. A matrix of PP homopolymer is prepared and then treated with ethylene and more propylene to provide a copolymer having elastomeric regimes within the PP matrix. Often the same Ziegler-Natta catalyst can be used for both chemical steps. Ziegler-Natta catalyst system compositions vary but have similar features in the different processes. Metallocene catalysts are also used, to make a small percentage of commercial ethylene-propylene copolymer having specialized properties.

Technical descriptions and economic analysis are provided herein for the following processes:

- The UNIPOL® process of W. R. Grace, using fluidized-bed, gas-phase technology,
- The Novolen® process of CB&I, using vertical stirred-bed, gas-phase technology,
- The Innovene™ process of INEOS, using horizontal stirred-bed, gas-phase technology,
- The Innovene process of INEOS with INstage H₂-control technology,
- The Spherizone™ process of LyondellBasell, using multizone circulating-bed, gas-phase, and fluidized-bed technology, and
- The Spheripol™ process of LyondellBasell, using bulk slurry-phase and fluidized-bed technology.
Production of polypropylene impact copolymer is reviewed, with characterization of the patent portfolios for these six technologies and all other commercial PP processes over the past decade. Full patent reviews are provided for both Ziegler-Natta and metallocene catalyst systems. The industry status is updated, and a summary of the modern processes is provided in terms of comparative economics and the key process indicators (KPI) of capital intensity, energy intensity, carbon efficiency, and carbon intensity. Lastly, an interactive module is included—the iPEP™ Navigator Polypropylene tool—that provides a snapshot of economics for each process and allows the user to select the process, units, and region of interest.

While the processes presented herein represent the IHS Chemical Process Economic Program (PEP’s) independent interpretation of the literature and may not reflect in whole or in part the actual plant configurations, we do believe that the conceptual designs sufficiently representative of plant configurations to enable Class III economic evaluations.
Contents

1 Introduction 14
2 Summary 16
 Technology overview 16
 Chemistry and catalysis 16
 Product properties 16
 Processes for PP production 17
 Commercial status 18
 Polypropylene impact copolymer technologies 18
 The UNIPOL process 19
 The Novolen process 21
 The Innovene process 24
 The Spherizone process 24
 The Spheripol process 25
 Process economics 26
 Key process indicators 33
3 Industry status 38
 Demand and market drivers 39
 Current producers and plant capacities 40
 Product price 43
4 Technology review 45
 Polypropylene reaction chemistry and structure 45
 Polypropylene products and properties 48
 Homopolymers and random copolymers 48
 Heterophase propylene (polypropylene impact copolymer) 49
 Ziegler-Natta catalysts 49
 First- and second-generation catalysts 50
 Third-generation catalysts 51
 Fourth-generation catalysts 51
 Fifth-generation catalysts 53
 Sixth-generation catalysts 56
 Ziegler-Natta catalyst patent review (10+ year timeframe) 56
 LyondellBasell 57
 Dow Chemical, W.R. Grace 62
 CB&I Novolen 65
 INEOS 66
 Sumitomo 67
 ExxonMobil 72
 Borealis 73
 Other companies 75
 Single-site catalysts 76
 Challenges to implementation of metallocene-based polypropylene 77
 Single-site catalyst patent review (10-year timeframe) 79
 Japan Polypropylene 81
 Borealis 82
5 Propylene impact copolymer by the Grace UNIPOL PP process

Process description 154
Section 100—Polymerization 155
Section 200—Resin degassing and vent recovery 156
Section 300—Product finishing and bagging 156
Process discussion 160
6 Propylene impact copolymer by the CB&I Novolen® PP process

Process description
Section 100—Polymerization
Section 200—Product finishing and bagging
Process discussion
Cost estimates
Fixed capital costs
Production costs
Integration with a petrochemical complex

7 Propylene impact copolymer by the INEOS Innovene™ PP process

Process description of Innovene
Section 100—Polymerization
Section 200—Product finishing and bagging
Process discussion
Cost estimates
Fixed capital costs
Innovene
Innovene with INstage
Production costs
Integration with a petrochemical complex

8 Propylene impact copolymer by the LyondellBasell Spherizone™ PP process

Process description
Section 100—Polymerization
Section 200—Product finishing and bagging
Process discussion
Cost estimates
Fixed capital costs
Production costs
Integration with a petrochemical complex

9 Propylene impact copolymer by the LyondellBasell Spheripol™ PP process

Process description
Section 100—Polymerization
Section 200—Product finishing and bagging
Process discussion
Cost estimates
Fixed capital costs
Production costs
Integration with a petrochemical complex

Appendix A—Design and cost bases
Design conditions
Cost bases
Capital investment
Production costs
Effect of operating level on production costs

Appendix B—References by document number

Appendix C—Patent summaries by assignee

Appendix D—Process flow diagrams

Appendix E—iPEP Navigator for polypropylene
Tables

Table 2.1 Summary of process technologies for polypropylene impact copolymer 22
Table 2.2 Polypropylene technologies—Total capital investment 29
Table 2.3 Polypropylene technologies—Production costs 31
Table 2.4 Definitions of key process indicators 34
Table 2.5 Key process indicators 35
Table 2.6 Leading commercial PP processes (May 2016) 38
Table 2.7 Largest volume PP producers 41
Table 2.8 PP plants of ≥400 ktpy single train capacity 42
Table 2.9 Single-site catalysts/metalloocene technology for PP 43
Table 4.1 Progress in Ziegler-Natta catalysts 50
Table 4.2 Effect of different mixtures of SCAs on the maximum bed temperature during a simulated power outage 63
Table 4.3 Approximate number of single-site polypropylene patents by company, 2005–Q12016 80
Table 4.4 Typical operating conditions for different polypropylene processes 99
Table 4.5 Product capability of the Spheripol process by reactor configuration 109
Table 5.1 Propylene impact copolymer production by the UNIPOL process—Design bases and assumptions 155
Table 5.2 Propylene impact copolymer production by the UNIPOL process—Stream flows 157
Table 5.3 Propylene impact copolymer production by the UNIPOL process—Summary of waste streams 158
Table 5.4 Propylene impact copolymer production by the UNIPOL process—Major equipment 159
Table 5.5 Propylene impact copolymer production by the UNIPOL process—Utilities summary 160
Table 5.6 Propylene impact copolymer production by the UNIPOL process—Total capital investment 164
Table 5.7 Propylene impact copolymer production by the UNIPOL process—Capital investment by section 165
Table 5.8 Propylene impact copolymer production by the UNIPOL process—Production costs 166
Table 6.1 Propylene impact copolymer production by the Novolen process—Design bases and assumptions 171
Table 6.2 Propylene impact copolymer production by the Novolen process—Stream flows 172
Table 6.3 Propylene impact copolymer production by the Novolen process—Summary of waste streams 173
Table 6.4 Propylene impact copolymer production by the Novolen process—Major equipment 174
Table 6.5 Propylene impact copolymer production by the Novolen process—Utilities summary 176
Table 6.6 Propylene impact copolymer production by the Novolen process—Total capital investment 179
Table 6.7 Propylene impact copolymer production by the Novolen process—Capital investment by section 180
Table 6.8 Propylene impact copolymer production by the Novolen process—Production costs 181
Table 7.1 Propylene impact copolymer production by the Innovene process (with or without INstage)—Design bases and assumptions 187
Table 7.2 Propylene impact copolymer production by the Innovene process (with or without INstage)—Stream flows 188
Table 7.3 Propylene impact copolymer production by the Innovene process (with or without INstage)—Waste streams 189
Table 7.4 Propylene impact copolymer production by the Innovene process (with and without INstage)—Major equipment** 189
Table 7.5 Propylene impact copolymer production by the Innovene process (no INstage)—Utilities summary 191
Table 7.5A Propylene impact copolymer production by the Innovene process with INstage—Utilities summary 191
Table 7.6 Propylene impact copolymer production by the Innovene process (no INstage)—Total capital investment 195
Table 7.7 Propylene impact copolymer production by the Innovene process (no INstage)—Capital investment by section 196
Table 7.6A Propylene impact copolymer production by the Innovene process (with INstage)—
 Total capital investment 197
Table 7.7A Propylene impact copolymer production by the Innovene process (with INstage)—
 Capital investment by section 198
Table 7.8 Propylene impact copolymer production by the Innovene process (no INstage)—
 Production costs 199
Table 7.8A Propylene impact copolymer production by the Innovene process (with INstage)—
 Production costs 201
Table 8.1 Propylene impact copolymer production by the Spherizone process—Design bases and
 assumptions 207
Table 8.2 Propylene impact copolymer production by the Spherizone process—Stream flows 208
Table 8.3 Propylene impact copolymer production by the Spherizone process—Summary of
 waste streams 210
Table 8.4 Propylene impact copolymer production by the Spherizone process—Major equipment 211
Table 8.5 Propylene impact copolymer production by the Spherizone process—Utilities summary 213
Table 8.6 Propylene impact copolymer production by the Spherizone process—Total capital
 investment 217
Table 8.7 Propylene impact copolymer production by the Spherizone process—Capital
 investment by section 218
Table 8.8 Propylene impact copolymer production by the Spherizone process—Production costs 219
Table 9.1 Propylene impact copolymer production by the Spheripol process—Design bases and
 assumptions 225
Table 9.2 Propylene impact copolymer production by the Spheripol process—Stream flows 226
Table 9.3 Propylene impact copolymer production by the Spheripol process—Summary of waste
 streams 227
Table 9.4 Propylene impact copolymer production by the Spheripol process—Major equipment 228
Table 9.5 Propylene impact copolymer production by the Spheripol process—Utilities summary 230
Table 9.6 Propylene impact copolymer production by the Spheripol process—Total capital
 investment 234
Table 9.7 Propylene impact copolymer production by the Spheripol process—Capital investment
 by section 235
Table 9.8 Propylene impact copolymer production by the Spheripol process—Production costs 236

Figures

Figure 2.1 Block flow diagrams of processes for polypropylene impact copolymer production
 (licensor) 20
Figure 2.2 Factors of production for polypropylene processes 28
Figure 2.3 Market prices for polypropylene and propylene in recent years 33
Figure 2.4 Key process indicators 35
Figure 2.5 CO₂ footprint breakdown 37
Figure 3.1 Supply and demand of PP by year 39
Figure 3.2 World capacity for PP by region 43
Figure 3.3 Price of PP, North America 44
Figure 4.1 Atactic, isotactic, and syndiotactic propylene structures 47
Figure 4.2 Structures of representative internal and external electron donors in fourth-generation
 catalysts 53
Figure 4.3 Structure of representative internal electron donors used in fifth-generation catalysts 54
Figure 4.4 Behavior of third-, fourth-, and fifth-generation Ziegler-Natta catalysts in gas-phase
 reactors 56
Figure 4.5 Structures of succinate and sulfone electron donors 59
Figure 4.6 Two nonphthalate internal electron donors used together (WO 2012017040) 60
Figure 4.7 Structure of an ester-carbonate internal electron donor (EP 2636687) 60
Figure 4.8 Examples of aromatic nonphthalate internal donors (WO 2013174759/WO
 2013057026) 61
Figure 4.9 Structure of silyl diol ester internal electron donor (US 2010130709) 63
Figure 4.10 Preferred structures of phosphorus oxygenates used as ED or SCA (WO 2010078330) 63
Figure 4.11 Structure of substituted 1,2-phenylene aromatic diester internal electron donor (WO 20110078480) 63
Figure 4.12 Alkoxyalkyl ester and alkoxyalkyl 2-propenoate nonphthalate internal electron donors (WO 2012087536) 64
Figure 4.13 Cycloheptapolyenedicarboxylic diester internal electron donor (US 2011269927) 64
Figure 4.14 The succinic acid diester internal electron donor diethyl 2-cyclohexyl-3-isopropyl-2-cyano succinate (CN 102372651) 71
Figure 4.15 Bis(2-ethylhexyl)citraconate electron donor (EP 2960256) 74
Figure 4.16 Structures of indene and a representative stereospecific metallocene catalyst component 77
Figure 4.17 Structures of novel single-site catalysts from JPP 81
Figure 4.18 Symmetrical substituted metallocene structures (WO 2014096282) 83
Figure 4.19 Fluorenly-based metallocene catalysts (JP 2009114249/ US 2010004384) 91
Figure 4.20 ansta-Metallocene catalysts of LG Chemical (EP 3045478/ KR 2016069251) 93
Figure 4.21 Examples of Novolen’s substituted, bridged metallocene structures (US 7285608) 94
Figure 4.22 UNIPOL PP gas-phase PP process for impact copolymer production 100
Figure 4.23 Sumitomo Chemical gas-phase PP process for impact copolymer production 101
Figure 4.24 Novolen gas-phase PP process for impact copolymer production 102
Figure 4.25 Innovene gas-phase PP process for impact copolymer production 104
Figure 4.26 Product features available using the Innovene PP process with and without INstage technology 105
Figure 4.27 JPP Horizone gas-phase PP process for impact copolymer production 106
Figure 4.28 Spherizone gas-phase PP process for impact copolymer production 107
Figure 4.29 Expanded product properties capability with the Spherizone process 108
Figure 4.30 Spheripol bulk slurry-phase PP process for impact copolymer production 110
Figure 4.31 Spheripol fluidized-bed reactor for impact copolymer production (WO 2007071527) 111
Figure 4.32 Mitsui Hypol II process for impact copolymer production 112
Figure 4.33 ExxonMobil bulk slurry-phase PP process for impact copolymer production 113
Figure 4.34 Borealis bulk slurry-phase PP process for impact copolymer production 114
Figure 5.2 Production cost of polypropylene impact copolymer via the UNIPOL process as a function of plant operating level and plant capacity 168
Figure 6.2 Production cost of polypropylene impact copolymer via the Novolen process as a function of plant operating level and plant capacity 183
Figure 7.2 Production cost of polypropylene impact copolymer via the Innovene process as a function of plant operating level and plant capacity 203
Figure 8.2 Production cost of polypropylene impact copolymer via the Spherizone process as a function of plant operating level and plant capacity 221
Figure 9.2 Production cost of polypropylene impact copolymer via the Spheripol process as a function of plant operating level and plant capacity 238
Figure 5.1 Propylene impact copolymer production by a gas-phase process similar to the UNIPOL™ PP process (page 1 of 3) 436
Figure 5.1 Propylene impact copolymer production by a gas-phase process similar to the UNIPOL™ PP process (page 2 of 3) 437
Figure 5.1 Propylene impact copolymer production by a gas-phase process similar to the UNIPOL™ PP process (page 3 of 3) 438
Figure 6.1 Propylene impact copolymer production by a gas-phase process similar to the Novolen™ PP process (page 1 of 2) 439
Figure 6.1 Propylene impact copolymer production by a gas-phase process similar to the Novolen™ PP process (page 2 of 2) 440
Figure 7.1 Propylene impact copolymer production by a horizontal stirred-bed, gas-phase process similar to the Innovene™ PP process, with INstage (page 1 of 2) 441
Figure 7.1 Propylene impact copolymer production by a horizontal stirred-bed, gas-phase process similar to the Innovene™ PP process, with INstage (page 2 of 2) 442
Figure 8.1 Propylene impact copolymer production by a gas-phase process similar to the Spherizone™ PP process (page 1 of 2) 443