

"Double" disruptive technologies

Positioning to impact the petrochemical industry

Don Bari, Vice President, Chemicals Technology & Analytics, IHS Markit

22 March 2018 Hilton Americas | Houston, TX, US

Agenda

What are disruptive technologies?

What are they and what makes them interesting?

Implication for the industry

95.02		

In business, "disruptive" relates to a new product, service or idea that radically changes an industry...one that successfully challenges the established incumbent(s)

0

Coal CX

Solids

All Rights Reserved

Cont

Gas **Butanes** Condensates Propane **C4** C5+ CЗ Naphtha C5.C10 Ethane 16116s CV Mid Distillates Ethylene & propylene are Natural CHICIB the most significant Gas petrochemical chemical feedstocks 165 & 90 MMTPA consumed, Sugars Heavy C Bio Solids respectively Objective: converting low-cost Biomass molecules to high-value molecules

Conf

and the second second

Agenda

What are disruptive technologies?

What are they and what makes them interesting?

Implication on the industry

Siluria's OCM technology produces ethylene and propylene from methane and other NGLs

Siluria's OCM technology produces ethylene and propylene from methane and other NGLs

Siluria's OCM process (in the Demonstration Stage) is expected to be competitive in "advantaged" configurations...

Siluria's Technology can be vehicle for upgrading light olefin assets, for example							
Asset	Feedstock	Integration Dimension	Advantages				
Steam Cracker Integration	 Natural gas Cracking furnace methane containing off- gasses 	 Feedstock: Natural gas Methane containing off-gases Cold-end integration 	 Additional ethylene production Lower feedstock costs e.g., off gases Adds C₁ as feedstock Reduced GHG intensity Debottlenecking opportunities 				
PDH Integration	 PDH off-gases containing methane/ ethane 	 Feedstock: Methane/ethane- containing off-gases Cold-end integration 	 Additional propylene production Ethylene for PP plant Lower overall feedstock costs PDH increased efficiency (fuel-gas production climbs as PDH catalyst ages) 				

Heavy Ci9

Solids

Coa Š

Bio Solids

Confi

Biomass

Nafural

All Rights Reserved.

Gas

Gas

Propane

Butanes C4

Crude to Chemicals (Olefins and **Aromatics**)

Condensates C5+

ExxonMobil, Saudi Aramco/Sabic JV and Aramco with Chevron Lummus Global (CLG), are companies working on this technology

Crude to "more" chemicals could be very significant industry "disruptor"

- Reconfiguration in refinery to convert heavy-ends of crude to lighter molecules, "right" for producing petrochemicals
- In order to produce 40-50% of the bbl to chemical feedstocks
- Versus traditional 20-25% for an integrated refinery
- Half of this to light olefins

MM

Crude-to-olefins is expected to have very significant impact on chemical industry e.g., for Saudi Aramco/CLG

- Feeds whole (light) barrel to hydrocracker (HK)
- Making distillation more simple than conventional CDU
- HS FCC technology by JV with JX Nippon

Light olefins production is ~40% of crude feed...but 72% for chemical feedstocks

Confidential.© 2018 IHS Markit[™]. All Rights Reserved

Source: PEP 29J: Steam Cracking of Crude Oil

Crude-to-olefins is expected to have very significant impact on chemical industry — e.g., for Saudi Aramco/CLG

(*Reuters* 1/8/18)

Saudi Aramco signs crude-to-chemicals technology agreement

"... 70 to 80 percent of crude intake will be converted into chemicals, with an eye to beginning commercialization in two years..."

"... thermal crude-to-chemicals technology - would cut capital costs by 30 percent compared to conventional refining..."

Source: PEP 29J: Steam Cracking of Crude Oil

Light olefins production is ~40% of crude feed...but 72% for chemical feedstocks

Natural

All Rights Reserved.

Ses

Gas

Propane

Butanes C4

Direct Syngas to Light Olefins

Condensates

C5+

OX-ZEO process, developed by DICP, and process developed by SARI* have potential to be commercially viable

*both under Chinese Academy of Sciences

Solids

Coal CX

Conf

Biomass

Bio Solids

Based on an oxide of Zn/Cr metals with modified zeolite catalyst, "direct" syngas process yields high light olefins without need for a methanol intermediate

Confi

All Rights Reserved.

Several CTL developers in China claim to have superior slurry Fischer-Tropsch (F-T) catalyst & reactor technology

Source: PEP 305: CTL Enhanced Production of Naphtha and Light Olefins

۲

There are CTL plants totalling 4 MM TPA of naphtha from coal being commercialized and planned in China

Company	Shenhua Ningmei's	Lu'an	Shaanxi Energy	Yitai
Liquid Fuels, MM TPA	4 (55 Bn RMB/ \$7.9 Bn)	1	4	1 at Yili & 2 at Ordos
Stage of Development	Commecial Dec 2018	Commercial Dec 2017	Feasibility	Approved, Op Pilot (160KTPA)
Coal Feed, MM TPA	20.4	5?	20 ?	
Naphtha, MMTPA	1.08	0.25	1.0	0.25 & 0.75
LPG, MMTPA	0.34	0.09		
Diesel. KTPA	2.73	0.71		

Source: PEP 305: CTL Enhanced Production of Naphtha and Light Olefins

Agenda

What are disruptive technologies?

What are they and what makes them interesting?

Implication for the industry

And finally...

China investment location factor ~0.53 USGC, due to:

- Efficient construction methods
- High construction productivity
- Low skilled labor cost
- Extensive domestic equipment
 manufacturing capabilities
- **??** Market drivers are expected to close this advantage over time

Crude oil to chemicals ...target to drive chemical feedstock capacity and value add to crude oil, especially in Middle East

Crude oil cracking ... but also could have a significant import impact, if built in petrochemical -deficit regions

Ox-Zeo Direct conversion of to olefins....could have industry impact in China by making coal-based technology more sustainable

Siluria's OCM to ethylene....positioned to impact at company level

Really finally...the bar is moving up for capital and operating resources to achieve a competitive & sustainable advantage by:

Securing feedstock advantage

Converting lowest cost molecules to high value products

Leveraging technology developments – especially revolutionary ones

Integrating physically, upstream and downstream

Decreasing Capital Intensity: through scale, simplicity and location

