ASIA CHEMICAL CONFERENCE

Global Petrochemical Market Outlook

Planning For Growth Given Heightened Uncertainty In Market Fundamentals

November 2016, Singapore

Mark Eramo, VP Global Business Development – Chemicals
Houston, TX
mark.eramo@ihsmarkit.com
Global Chemical Industry: Enabling Modern Living

Natural Resources
- Mining, drilling, refining, gas processing
- Oil
- Gas
- Coal
- Minerals
- Renewables

Chemical Industry Value Chain

<table>
<thead>
<tr>
<th>Base Chemicals</th>
<th>Chemical Intermediates</th>
<th>Formulated products / performance materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olefins (Ethylene, propylene, butylene)</td>
<td>Commodity specialties</td>
<td>Plastics and engineering resins</td>
</tr>
<tr>
<td>Aromatics (benzene, toluene, xylenes)</td>
<td>Differentiated commodities</td>
<td>- Extruded films, pipe, profiles, coatings, sheet, foams</td>
</tr>
<tr>
<td>Chlor-akali (chlorine, caustic soda)</td>
<td>Technical specialties</td>
<td>- Blow-molded parts</td>
</tr>
<tr>
<td>Others (ammonia, phosphorous)</td>
<td></td>
<td>- Composites</td>
</tr>
</tbody>
</table>

Customers
- Automotive / transportation
- Consumer products
- Packaging
- Building / construction
- Recreation / sport
- Industrial
- Medical
- Pharmaceutical
- Personal care
- Textiles
- Electrical / electronics
- Aircraft / aerospace
- Business equipment

© 2016 IHS Markit
Planning For Growth Given Heightened Uncertainty

AGENDA

• Impact of Energy on Chemical Investment Decisions.
• Where are the major investments in new capacity?
• Energy extremes enabling non-conventional capacity.
• Declining CAPEX and rising Mergers & Acquisitions
• Strategic Considerations
Energy & Economic Fundamentals Impact Investment Decisions

- **Energy trends** impact regional competitiveness and profitability

- Advantaged investments in North America and China, see **lower margins in low crude oil** market.

- Economy and energy assumptions **drive key decisions** of location, feedstock, technology, scale...

- Uncertainty results in **delayed approvals**; when combined with steady growth leads to tighter market conditions in basic chemical value-chains

- **Crude oil (energy) “at the extremes”** impacts demand for chemicals and plastics. On the high end, it can “destroy” demand and on the low end it can stimulate demand.
Steady Increase In Crude Oil Price; Stable/Low Natural Gas In North America; Moderate Global Economic Growth

% Change, GDP

<table>
<thead>
<tr>
<th></th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>World</td>
<td>2.7</td>
<td>2.7</td>
<td>2.4</td>
<td>2.8</td>
<td>3.1</td>
</tr>
<tr>
<td>United States</td>
<td>2.4</td>
<td>2.6</td>
<td>1.4</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>Canada</td>
<td>2.5</td>
<td>1.1</td>
<td>1.2</td>
<td>2.2</td>
<td>2.3</td>
</tr>
<tr>
<td>Eurozone</td>
<td>1.1</td>
<td>1.9</td>
<td>1.6</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>3.1</td>
<td>2.2</td>
<td>2.0</td>
<td>1.0</td>
<td>1.3</td>
</tr>
<tr>
<td>China</td>
<td>7.3</td>
<td>6.9</td>
<td>6.6</td>
<td>6.3</td>
<td>6.4</td>
</tr>
<tr>
<td>Japan</td>
<td>-0.1</td>
<td>0.6</td>
<td>0.6</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td>India</td>
<td>7.2</td>
<td>7.5</td>
<td>7.5</td>
<td>7.4</td>
<td>7.7</td>
</tr>
<tr>
<td>Brazil</td>
<td>0.1</td>
<td>-3.9</td>
<td>-3.2</td>
<td>0.6</td>
<td>2.2</td>
</tr>
<tr>
<td>Russia</td>
<td>0.7</td>
<td>-3.7</td>
<td>-0.7</td>
<td>0.8</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Global Crude Oil vs. USGC Natural Gas

$43.5/bbl
Gas-to-Crude Ratio Favors North America Investments Since 2010

USGC Natural Gas Versus WTI Crude Oil Pricing (US$ / MM BTU)
Impact of Changing Energy Dynamics On Regional Chemical Capacity Additions

Annual Change - Total Basic Chemicals Capacity:
Ethylene, Propylene, Methanol, Benzene, Paraxylene, Chlorine

<table>
<thead>
<tr>
<th>Year</th>
<th>China</th>
<th>Middle East</th>
<th>North America</th>
<th>West Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2016 IHS Markit
Impact of Changing Energy Dynamics On Regional Chemical Capacity Additions

Annual Change - Total Basic Chemicals Capacity: Ethylene, Propylene, Methanol, Benzene, Paraxylene, Chlorine

Gas-To-Crude BTU Ratio, %
Impact of Changing Energy Dynamics On Regional Chemical Capacity Additions

Annual Change - Total Basic Chemicals Capacity:
Ethylene, Propylene, Methanol, Benzene, Paraxylene, Chlorine

© 2016 IHS Markit
Impact of Changing Energy Dynamics On Regional Chemical Capacity Additions

Annual Change - Total Basic Chemicals Capacity:
Ethylene, Propylene, Methanol, Benzene, Paraxylene, Chlorine

Annual Change

<table>
<thead>
<tr>
<th>Year</th>
<th>North America</th>
<th>Gas-To-Crude BTU Ratio, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

North America
Gas-To-Crude BTU Ratio, %
Planning For Growth Given Heightened Uncertainty

AGENDA

• Impact of Energy on Chemical Investment Decisions.

• Where are the major investments in new capacity?

• Energy extremes enabling non-conventional capacity.

• Declining CAPEX and rising Mergers & Acquisitions

• Strategic Considerations
GLOBAL BASE CHEMICAL ASSETS BY LOCATION

580 MM metric tons in 2015
Investment Decisions Must Evaluate Many Factors Beyond Energy & Economy

Investment Assumptions:
- Global crude oil price scenarios
- Global economic growth outlook
- **Geo-political considerations**
- North American energy market
- Current state of the profit cycle
- **China structural changes**
- Non-conventional technology
- **Sustainability**
- Levels of integration
- **Regional CAPEX differentials**
- Logistics investments

Braskem-Idesa Ethylene/PE Plant
Nanchital, Veracruz, Mexico
Start-Up: June 2016
Base Chemical Capacity To Exceed 750 MM Metric Tons By 2025

Chemical Investment “Drivers”

• Secure an energy & feedstock advantage.

• Leverage current technology and build world-scale.

• Invest with proximity to local markets and/or access to trade routes.

• Build to leverage an upstream and/or downstream integrated position.
Beyond 2020...Where Will The Next Wave Of Capacity Be Built?

<table>
<thead>
<tr>
<th>Region</th>
<th>2015</th>
<th>2025</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>90</td>
<td>137</td>
<td>47</td>
</tr>
<tr>
<td>South America</td>
<td>24</td>
<td>26</td>
<td>2</td>
</tr>
<tr>
<td>Europe</td>
<td>89</td>
<td>101</td>
<td>12</td>
</tr>
<tr>
<td>Middle East / Africa</td>
<td>77</td>
<td>119</td>
<td>42</td>
</tr>
<tr>
<td>Asia/India (less China)</td>
<td>130</td>
<td>163</td>
<td>33</td>
</tr>
<tr>
<td>China</td>
<td>172</td>
<td>241</td>
<td>69</td>
</tr>
<tr>
<td>Total</td>
<td>582</td>
<td>787</td>
<td>205</td>
</tr>
</tbody>
</table>

*Ethylene, Propylene, Methanol, Benzene, Paraxylene, Chlorine"
China: Slower Pace Of New Capacity & Increased Focus On:
> Industry Competitiveness
> Safety & Pollution control
> Segment Consolidation

- Tighten pollution control; industry safety performance; rationalize inefficient/non-competitive assets.
- Develop modern coal chemicals asset base.
- Consolidation of 100+ chemical industry parks into seven national chemical industrial zones.
- Rapid growth in private investment potentially changes future behavior.
- Overseas investment activity.
China 13th 5-Year Plan Slows Pace Of Investment; Focus On Competitive Position, Safety & Pollution, Consolidation

Basic chemicals expansions of 200 MM metric tons over two decades (2005 – 2025).

Self-sufficiency in propylene 85+% by 2020; ethylene remains near 60%.
Middle East Rate Of Investment Slows;

> Adding Diverse Feedstocks;
> Focused On Operational Efficiencies

- Ethane prices in Saudi Arabia raised to reflect transition in strategy for future investments.
- Low crude prices sharpen focus on operational costs.
- Sadara project in Saudi Arabia represents measured approach to diversify businesses.
- Lifting of nuclear sanctions on Iran has re-opened plans to expand the chemical space.
- Significant dependence on exports continues well into the future.
Middle East Focus Shifting To Feed-slate Diversity And Improving Operational Efficiencies

Middle East Base Chemical Capacity

- Propylene (PG/CG)
- Ethylene
- Paraxylene
- Benzene
- Methanol
- Chlorine

© 2016 IHS Markit
North America: An Attractive Place For Chemicals Investments Once Again

- Low cost energy and natural gas liquids provide sustainable advantage.

- Advantaged feedstock will enable an additional wave beyond 2020, assuming crude oil price recovery (near $80/bbl) and low natural gas pricing (near $4/MM BTU).

- Domestic and International companies seek to invest; leveraging the low-cost opportunities. New entrants to create increased competition in domestic markets.

- Logistics & port infrastructure investment needed to support higher level of exports.
North America Low Cost Brings Back Base Chemical & Associated Derivative Investments

North America - Base Chemical Total Capacity

Source: IHS
Planning For Growth Given Heightened Uncertainty

AGENDA

• Impact of Energy on Chemical Investment Decisions.
• Where are the major investments in new capacity?
• Energy extremes enabling non-conventional capacity.
• Declining CAPEX and rising Mergers & Acquisitions
• Strategic Considerations
Energy At The Extremes Has Catalyzed A “New Era” In Light Olefins Production

- For decades, light olefins supply based on refinery & naphtha cracker integrated sites
- Ethane crackers emerged where ethane was advantaged; USGC, Mexico, Alberta, Middle East; other areas where liquids rich gas was “trapped”.
- Propylene was a byproduct of refining and heavy or flexible steam cracking.
- Today light olefins are being made on purpose via a variety of technologies beyond refining and steam cracking: PDH, CTO/P, MTO/P, Metathesis, GTO/P, OCM
Energy & Feedstocks Influence Location & Technology For New Capacity Decisions

• Energy and feedstock deltas emerged in 2009 as part of the North America shale developments.

• These spreads supported “on-purpose” capacity to be viable as an incremental supply option.

• The spreads remained high through 2014, attracting a new investment wave.

• 2015 collapse in crude pricing has created a pause in new approvals.

Notes: China Coal is on a 6000kcal/kg basis, Qinhuangdao FOB
Source: IHS
Non-conventional Technology Providing Options For Future Investments In Olefins Production

Conventional Light Olefins Cash Cost

<table>
<thead>
<tr>
<th>Year</th>
<th>US Ethane</th>
<th>US PDH</th>
<th>NEA PDH</th>
<th>NEA Naphtha</th>
<th>WEP Naphtha</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>700</td>
<td>900</td>
<td>800</td>
<td>1000</td>
<td>1200</td>
</tr>
<tr>
<td>2013</td>
<td>800</td>
<td>1000</td>
<td>900</td>
<td>1100</td>
<td>1300</td>
</tr>
<tr>
<td>2015</td>
<td>900</td>
<td>1100</td>
<td>1000</td>
<td>1200</td>
<td>1400</td>
</tr>
</tbody>
</table>

Non-Conventional Light Olefins Cash Cost

<table>
<thead>
<tr>
<th>Year</th>
<th>US GTP</th>
<th>US GTO</th>
<th>NEA CTO</th>
<th>NEA MTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>400</td>
<td>500</td>
<td>600</td>
<td>700</td>
</tr>
<tr>
<td>2013</td>
<td>500</td>
<td>600</td>
<td>700</td>
<td>800</td>
</tr>
<tr>
<td>2015</td>
<td>600</td>
<td>700</td>
<td>800</td>
<td>900</td>
</tr>
</tbody>
</table>

PDH = Propane Dehydro; GTP = Gas to Propylene; GTO = Gas to Olefins; CTO = Coal to Olefins; MTO = Methanol to Olefins

Brent Crude and Natural Gas Prices

<table>
<thead>
<tr>
<th>Year</th>
<th>Brent Crude ($/Bbl)</th>
<th>Natural Gas ($/MM Btu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>111</td>
<td>4.14</td>
</tr>
<tr>
<td>2013</td>
<td>109</td>
<td>3.76</td>
</tr>
<tr>
<td>2015</td>
<td>52</td>
<td>2.76</td>
</tr>
</tbody>
</table>
Planning For Growth Given Heightened Uncertainty

AGENDA

- Where are the major investments in new capacity?
- Energy extremes enabling non-conventional capacity.
- Declining CAPEX and rising Mergers & Acquisitions
- Strategic Considerations
As CAPEX Declines, M&A Activity Increases As Means To Achieve Growth

Global Chemical Capital Expenditures

Annual M&A Value and EBITA Multiples

Source: IHS
Planning For Growth Given Uncertain Fundamentals

Strategic Implications

- **Higher level of uncertainty** (in market fundamentals) presents difficulty in planning best options for future growth.

- **Board level decisions delayed**; non-conventional technology being considered; higher CAPEX; higher risk premiums; increased M&A

- Investment decisions delays in 2015/16 could lead to **supply limitations in the 2020+**.

- **On-purpose supply options** are viable given “extreme energy”; will be key drivers of market dynamics in the future.
Global Petrochemical Market Outlook

Planning For Growth Given Heightened Uncertainty In Market Fundamentals

November 2016, Singapore

Mark Eramo, VP Global Business Development – Chemicals
Houston, TX
mark.eramo@ihsmarkit.com

© 2016 IHS Markit