Abstract

This report describes catalysts used in catalytic cracking, hydrocracking, and hydrotreating of petroleum-based refinery distillates, from technical fundamentals through the most recent patent innovations and products on the market.

Technical descriptions and economic analysis are provided for three cracking catalysts:

- A residuum FCC (RFCC) catalyst resembling the Fortress™ NXT Multi-Stage Reaction Catalyst (MSRC) developed by BASF Catalysts
- An FCC catalyst resembling the REpLaCeR™ rare earth–free catalyst developed by W. R. Grace
- A classic hydrocracking catalyst enhanced with formulation and performance upgrades by Shell

Catalyst technologies for FCC, RFCC, hydrocracking, and hydrotreating are reviewed, including characterization of the product and patent portfolios for the following 16 refinery catalyst developers or licensors—Albemarle, ART, Axens, BASF, Catalysts & Chemicals Industries Co. (JGC), Chevron Lummus Global, China National Petroleum Co., China National Offshore Oil Corp., Clariant, Criterion (Shell), ExxonMobil, Grace, Haldor Topsøe, Honeywell UOP, Johnson Matthey, and Sinopec.

The technology review also includes discussion of recent patents by other, less prominent technology developers in the refinery catalyst field.

Catalyst designs, process designs, and process economics are presented for the aforementioned three cracking catalysts. The process economic evaluations include production of 15 key refinery catalyst products or intermediates. Lastly, an interactive module is included, the iPEP Navigator Cracking Catalyst tool, which provides a snapshot of economics for each process and allows the user to select the process, units, and region of interest.

While the processes presented herein represent the IHS Markit Chemical Process Economic Program’s (PEP’s) independent interpretation of the literature, and may not reflect in whole or in part the actual plant configurations, we believe that the conceptual designs are sufficiently representative of plant configurations to enable Class III economic evaluations.
Contents

1 Introduction 14
2 Summary 16
 Technical aspects 16
 Commercial aspects 18
 Catalyst portfolios marketed by major players 19
 Albemarle 20
 Advanced Refining Technologies (ART) 21
 BASF 22
 Catalysts & Chemicals Industries Co. (CCIC) 22
 Chevron Lummus Global 23
 China National Offshore Oil Corporation 23
 China National Petroleum Company 23
 Clariant 24
 Criterion Catalysts & Technologies 24
 ExxonMobil 24
 W. R. Grace 24
 Haldor Topsøe 25
 Honeywell UOP 25
 Johnson Matthey 25
 Sinopec 25
 Representative catalysts selected for design and economic analysis 26
 Production scale 28
 RFCC catalyst similar to BASF MSRC catalyst 28
 FCC catalyst similar to W. R. Grace catalyst 32
 Hydrocracking catalyst similar to Shell/CRI catalyst 33
 Process economics 34
3 Industry status 40
 Demand and market drivers 40
 Current producers 42
 Advanced Refining Technologies (ART) 42
 Albemarle 42
 Axens 43
 BASF Catalysts 44
 Catalysts & Chemicals Industries Co. (CCIC) 44
 Chevron Lummus Global 44
 China National Petroleum Company (CNPC) 44
 China National Offshore Oil Company (CNOOC) 45
 Clariant 45
 Criterion Catalysts & Technologies 45
 ExxonMobil 45
 W. R. Grace 46
 Haldor Topsøe 46
 Honeywell UOP 46
 Johnson Matthey 47
 Sinopec Group (China Petrochemical Corporation) 48
4 Technology review

4.1 FCC catalysts

4.2 FCC catalyst components, features, and chemistry

4.2.1 Matrix

4.2.2 Zeolite

4.2.2.1 Active sites, silica-to-alumina ratio, catalysis mechanisms, and product distribution

4.2.2.2 Thermal stability

4.2.2.3 Pore size and distribution

4.2.2.4 Other features affecting selectivity

4.2.3 Fillers and binders

4.2.4 Additives

4.2.4.1 ZSM-5

4.2.4.2 Metal passivators

4.2.4.3 Regeneration aids

4.2.4.4 Attrition resistance

4.2.4.5 Pore properties, surface area, and particle size distribution

4.2.4.6 Stability

4.2.5 Synthesis of FCC catalysts

4.2.5.1 Conventional zeolites via silicates or silica

4.2.5.2 Ultrastable zeolite Y (USY)

4.2.5.3 In situ processes

4.2.6 Catalyst handling and regeneration

4.2.7 Features of FCC/RFCC catalysts offered by major suppliers and licensors

4.2.7.1 Albemarle

4.2.7.2 BASF

4.2.7.3 W. R. Grace

4.2.7.4 Sinopec

4.2.7.5 Catalysts & Chemicals Industries Co. (CCIC, JGC Catalysts & Chemicals)

4.2.8 Developments in synthesis of FCC catalysts (review of recent patents)

4.2.8.1 Albemarle

4.2.8.2 Mg for less SOx

4.2.8.3 Ni and V trapping

4.2.8.4 Doping for homogeneous distribution of additive metals

4.2.8.5 Acidity and aromatics content

4.2.8.6 Oxygen removal from bio-oil

4.2.8.7 Alumina sources

4.2.8.8 BASF

4.2.8.9 Aluminum oxide-containing precursors for high macropore volume, metals tolerance, and attrition resistance

4.2.8.10 Shell and core catalysts

4.2.8.11 Phosphorus-containing catalysts for tailored porosity and coke selectivity

4.2.8.12 Increased propylene

4.2.8.13 Cationic polyelectrolyte for increased attrition resistance

4.2.8.14 Metal traps and passivators

4.2.8.15 Additives to reduce emissions of NOx, CO, and SOx

4.2.8.16 Solids waste management

4.2.8.17 W. R. Grace

4.2.8.18 Alternatives to rare earths

4.2.8.19 Alumina

4.2.8.20 New zeolites

4.2.8.21 Sulfur reduction

4.2.8.22 Metals passivation and tolerance

4.2.8.23 NOx reduction

4.2.8.24 Light olefins focus
Renewable feedstock 91
Sinopec 94
Enhanced catalyst stability 94
Binder-free catalyst 96
Zeolite synthesis 96
High N-content feedstocks 97
Additives to reduce quantity and/or remove NOx and CO emissions from FCC regenerator 97
Sulfur reduction and removal 97
Catalyst deactivation and regeneration 98
Spray drying 99
Light olefins focus 99
Other companies 103
Shell 103
UOP 103
Rive Technology 104
JGC (CCIC) 105
Additional recent patents on FCC catalysts 106
Hydroprocessing catalysts 107
Hydrotreating catalysts, catalytic features, and chemistry 111
Hydrodemetallation (HDM) 111
Olefins saturation 112
Hydrodesulfurization (HDS) 112
Novel catalysts for deep HDS 114
Hydrodenitrogenation (HDN) 114
Hydrodeoxygenation (HDO) 115
Hydrodearomatization (HDA) 115
Hydrocracking catalysts, catalytic features, and chemistry 116
Aromatics saturation 116
Hydrocracking 116
Chemistry of hydrocracking 117
Reaction pathways of hydrocracking 119
Resid upgrading 122
Fixed, ebullating, and slurry bed reactor processes 123
Synthesis methods for hydroprocessing catalysts 125
Amorphous base 125
Zeolite 125
Metals 127
Catalyst handling and regeneration 127
Hydroprocessing catalysts offered by major suppliers and licensors 128
Albemarle 128
Hydrotreating 128
Upgrading 129
Axens 131
Hydrotreating 131
Hydrocracking 131
ART and CLG 133
Hydrotreating 133
Hydrocracking 133
Upgrading 135
Clariant 137
Criterion 138
Hydrotreating 138
Hydrocracking 139
Upgrading 139
Haldor Topsøe 141
Unsupported hydrocracking catalysts with bridging sulfide ligands 177
Catalyst supports and polyfunctional organic additives 178
Self-activating hydrotreating catalysts 180
Other catalysts 180
Sinopec 181
UOP 190
General purpose hydroprocessing—Molybdates, tungstates, and molybdotungstates 190
General purpose hydroprocessing—New molecular sieves 190
Slurry hydrocracking catalysts 191
Other hydroprocessing catalysts 192
Other companies 193
Chemistry of catalytic reforming 194

5 Production of an RFCC catalyst using BASF technology 198
Catalyst and synthesis design bases 198
Clay-based matrix synthesis 199
In situ synthesis of zeolite NaY 200
Ion exchange and dealumination of zeolite 202
Process description 206
Section 100—Core-shell active matrix synthesis 206
Core particle preparation 206
Core/shell microsphere preparation 207
Section 200—Zeolite synthesis and ion exchange 207
Ammonium and rare earth ion exchange 208
Section 300—Catalyst production and finishing 208
Process discussion 217
Raw materials 217
Process configuration 218
Sequencing of operations 219
Materials of construction 219
By-products and process waste effluents 221
Cost estimates 226
Fixed capital costs 227
Production costs 227

6 Production of an FCC catalyst using technology from W. R. Grace 234
Catalyst and synthesis design bases 234
Selection of rare earth–free catalyst 234
Zeolite synthesis 235
Ion exchange and dealumination of zeolite 236
Matrix and binder components 237
Catalyst synthesis 238
Process description 242
Section 100—Zeolite synthesis 242
Section 200—Zeolite ion exchange and calcination 243
Section 300—Aluminum chlorhydrol synthesis 243
Section 400—Silica precipitation 244
Section 500—Catalyst production and finishing 244
Process discussion 268
Raw materials 268
Process configuration 268
Sequencing of operations 269
Materials of construction 271
By-products and process waste effluents 272
Cost estimates 273
Fixed capital costs 273
Production costs 275
Economics discussion 276

7 Production of a hydrocracking catalyst using Shell technology 283
Catalyst and synthesis design bases 283
Selection of catalyst 283
Zeolite selection and synthesis 284
Ion exchange and dealumination of zeolite 284
Amorphous silica alumina (ASA) 286
Zeolite Beta 286
Carrier synthesis 287
Catalyst synthesis 287
Process description 293
Section 100—Zeolite Y synthesis 293
Section 200—Zeolite Y ion exchange and dealumination 293
Section 300—Amorphous silica alumina synthesis 294
Section 400—Zeolite H Beta synthesis 294
Section 500—Carrier synthesis 295
Section 600—Catalyst production and finishing 295
Process discussion 323
Raw materials 323
Process configuration 323
Sequencing of operations 323
Materials of construction 327
By-products and process waste effluents 328
Cost estimates 328
Fixed capital costs 329
Production costs 330
Economics discussion 330

Appendix A—Patent summaries by assignee 337
Appendix B—Design and cost basis 444
Design conditions 445
Cost bases 445
Capital investment 445
Project construction timing 447
Available utilities 447
Production costs 448
Effect of operating level on production costs 448

Appendix C—Cited references 450
Appendix D—Process flow diagrams 504

Tables

Table 2.1 Summary of process technologies for production of representative cracking catalysts 30
Table 2.2 Cracking catalyst production technologies—Total capital investment 36
Table 2.3 Cracking catalyst production technologies—Production costs 37
Table 3.1 List of major companies offering catalysts for cracking and associated refinery processes 47
Table 3.2 Average prices for petroleum refining catalysts in North America—2016 49
Table 3.3 Average prices for petroleum refining catalysts in China—2016 49
Table 4.1 Typical cuts and temperature ranges for fractionation of crude oil (atmospheric pressure) 51
Table 4.2 Reactions occurring during catalytic cracking 54
Table 4.3 Structural properties of fresh FCC catalysts 61
Table 4.4 Features of commercial catalysts for FCC and RFCC—Albemarle 63
Table 4.5 Features of commercial catalysts for FCC and RFCC—BASF 64
Table 4.6 Features of commercial catalysts for FCC and RFCC—Grace 66
Table 4.7 Features of commercial catalysts for FCC and RFCC—Sinopec Catalyst Co.
Table 4.8 Features of commercial catalysts for FCC and RFCC—Catalysts & Chemicals Industries Co.
Table 4.9 Catalytic cracking catalyst and additive patents—Albemarle, 2000+
Table 4.10 Catalytic cracking catalyst and additive patents—BASF and Engelhard, 2000+
Table 4.11 Catalytic cracking catalyst and additive patents—Grace, 2000+
Table 4.12 Catalytic cracking catalyst and additive patents—Sinopec, 2000+
Table 4.13 Thermodynamic reactivity in hydroprocessing reactions
Table 4.14 Typical range of hydroprocessing unit operating conditions for different feeds
Table 4.15 Relative rate constants for hydroprocessing reactions over a Mo-containing sepiolite/alumina catalyst
Table 4.16 Main causes of catalyst deactivation in catalytic refining and petrochemical processes
Table 4.17 Hydroprocessing catalysts—Albemarle
Table 4.18 Hydroprocessing catalysts—Axens
Table 4.19 Hydroprocessing catalysts examples—ART and CLG
Table 4.20 Hydroprocessing catalysts—Criterion and Zeolyst
Table 4.21 Hydroprocessing catalysts—Haldor Topsoe*
Table 4.22 Hydroprocessing catalysts—Honeywell UOP
Table 4.23 Hydroprocessing catalysts—Sinopec
Table 4.24 Recent Chevron patents on hydrocracking catalysts for middle distillates production
Table 4.25 China Petroleum & Petrochemical (Sinopec) recent hydrocracking catalyst patents
Table 4.26 Recent UOP patents on slurry hydrocracking catalysts
Table 5.1 Production of RFCC catalyst similar to BASF catalyst—Component zeolite formalism
Table 5.2 Production of RFCC catalyst similar to BASF catalyst—Design bases and assumptions
Table 5.3 Production of RFCC catalyst similar to BASF catalyst—Batch mass balance (lb/batch)
Table 5.4 Production of RFCC catalyst similar to BASF catalyst—Major equipment
Table 5.5 Production of RFCC catalyst similar to BASF catalyst—Utilities summary
Table 5.6 Production of RFCC catalyst similar to BASF catalyst—Total capital investment by section
Table 5.7 Production of RFCC catalyst similar to BASF catalyst—Total capital investment
Table 5.8 Production of RFCC catalyst similar to BASF catalyst—Production costs
Table 6.1 Production of FCC catalyst similar to Grace catalyst—Design bases and assumptions
Table 6.2 Production of FCC catalyst similar to Grace catalyst—Batch mass balance (lb/batch)
Table 6.3 Production of FCC catalyst similar to Grace catalyst—Major equipment
Table 6.4 Production of FCC catalyst similar to Grace catalyst—Utilities summary
Table 6.5 Production of FCC catalyst similar to Grace catalyst—Fate of ISBL effluent streams
Table 6.6 Production of FCC catalyst similar to Grace catalyst—Total capital investment by section
Table 6.7 Production of FCC catalyst similar to Grace catalyst—Total capital investment
Table 6.8 Production of FCC catalyst similar to Grace catalyst—Production costs
Table 7.1 Production of hydrocracking catalyst similar to Shell catalyst—Design bases and assumptions
Table 7.2 Production of hydrocracking catalyst similar to Shell catalyst—Batch mass balance (lb/batch)
Table 7.3 Production of hydrocracking catalyst similar to Shell catalyst—Major equipment
Table 7.4 Production of hydrocracking catalyst similar to Shell catalyst—Utilities summary
Table 7.5 Production of hydrocracking catalyst similar to Shell catalyst—Fate of ISBL effluent streams
Table 7.6 Production of hydrocracking catalyst similar to Shell catalyst—Total capital investment by section
Table 7.7 Production of hydrocracking catalyst similar to Shell catalyst—Total capital investment
Table 7.8 Production of hydrocracking catalyst similar to Shell catalyst—Production costs
Figures

Figure 2.1 Schematic overview of refinery cracking operations producing transportation fuels 16
Figure 2.2 Schematic representation of an FCC unit 17
Figure 2.3 Schematic representation of a hydrocracking process 18
Figure 2.4 Block flow diagrams of cracking catalyst manufacturing processes 27
Figure 2.5 Cracking catalyst production technologies—Factors of production 38
Figure 2.6 Cracking catalyst production technologies—Factors of production, by-product credits included 39
Figure 3.1 World consumption of petroleum refining catalysts by value–2015 41
Figure 3.2 World consumption of petroleum refining catalysts by volume–2015 41
Figure 4.1 Schematic representation of crude oil conversion to fuels in a refinery 50
Figure 4.2 Schematic diagram of the reactor and regenerator in an FCC process 52
Figure 4.3 Reaction pathways in FCC 55
Figure 4.4 Seven component lump kinetic scheme for FCC 88
Figure 4.5 Percent sulfur reduction in gasoline cut versus ionic radius of RE (US 2010133145) 88
Figure 4.6 Schematic of distillate hydrotreating 109
Figure 4.7 Two-stage ISOCRACKING® unit for more difficult feeds 110
Figure 4.8 Generalized hydrocracking reaction scheme 117
Figure 4.9 Catalytic hydrocracking reaction network for fused ring compounds 121
Figure 4.10 Thermal hydrocracking lumped reaction model 121
Figure 4.11 Pore diameter and surface area in hydrotreating catalysts 123
Figure 4.12 Dependence of SAR of time and temperature of steaming 126
Figure 4.13 Breck Correlation for unit cell size versus framework SAR in Y zeolites 126
Figure 4.14 FCC pretreatment catalyst portfolio of Albemarle 131
Figure 4.15 Selectivity versus activity of CLG ISOCRACKING® catalysts 134
Figure 4.16 Catalyst stability for first and second generation HyBrim® catalysts 142
Figure 4.17 Hydroprocessing catalysts marketed by UOP 146
Figure 4.18 Hydrocracking catalyst portfolio of UOP 146
Figure 4.19 Polar organic, activity-boosting component of hydrotreating catalyst formulation 172
Figure 4.20 Active metals linked by bridging sulfur in hydrotreating catalysts (US 20110174686) 178
Figure 4.21 Catalytic reforming reactions 196
Figure 4.22 Relative compositions of feed and product in catalytic reforming 197
Figure 5.1 Chemical transformations of kaolin with heating 199
Figure 5.2 Production of RFCC catalyst similar to BASF catalyst—Formation of matrix particles 200
Figure 5.3 Production of RFCC catalyst similar to BASF catalyst—Formation of zeolite and ion exchange 201
Figure 5.4 Production of RFCC catalyst similar to BASF catalyst—Further sodium ion exchange and dealumination 202
Figure 5.5 Production of RFCC catalyst similar to BASF catalyst—Gantt chart of sequenced process operations 220
Figure 5.6 Production of RFCC catalyst similar to BASF catalyst—Multiple equipment occupancy chart 221
Figure 5.7 Production of RFCC catalyst similar to BASF catalyst—Production cost as a function of operating level and plant capacity 233
Figure 6.1 Production of FCC catalyst similar to Grace catalyst—Formation of zeolite, exchange of sodium ion, and dealumination 236
Figure 6.2 Production of FCC catalyst similar to Grace catalyst—Preparation of catalyst 238
Figure 6.3 Production of FCC catalyst similar to Grace catalyst—Gantt chart of sequenced process operations 270
Figure 6.4 Production of FCC catalyst similar to Grace catalyst—Multiple equipment occupancy chart 271
Figure 6.5 Production of FCC catalyst similar to Grace catalyst—Production cost of FCC catalyst as a function of operating level and plant capacity 282
Figure 7.1 Production of hydrocarbon catalyst similar to Shell catalyst—Formation of zeolite and ion exchange 285
Figure 7.2 Production of hydrocarbon catalyst similar to Shell catalyst—Preparation of zeolite beta

Figure 7.3 Production of hydrocarbon catalyst similar to Shell catalyst—Preparation of carrier and catalyst

Figure 7.4 Production of hydrocracking catalyst similar to Shell catalyst—Gantt chart of sequenced process operations

Figure 7.5 Production of hydrocracking catalyst similar to Shell catalyst—Multiple equipment occupancy chart

Figure 7.6 Production of hydrocracking catalyst similar to Shell catalyst—Production cost as a function of operating level and plant capacity

Figure 5.8 Production of RFCC catalyst similar to BASF catalyst—Section 100 (core-shell active matrix synthesis)

Figure 5.8 Production of RFCC catalyst similar to BASF catalyst—Section 200 (zeolite synthesis and ion exchange)

Figure 5.8 Production of RFCC catalyst similar to BASF catalyst—Section 300 (catalyst production and finishing)

Figure 6.6 Production of FCC catalyst similar to Grace catalyst—Section 100 (zeolite NaY production)

Figure 6.6 Production of FCC catalyst similar to Grace catalyst—Section 200 (zeolite ion exchange)

Figure 6.6 Production of FCC catalyst similar to Grace catalyst—Section 300 (binder synthesis)

Figure 6.6 Production of FCC catalyst similar to Grace catalyst—Section 400 (precipitated silica synthesis)

Figure 6.6 Production of FCC catalyst similar to Grace catalyst—Section 500 (catalyst synthesis)

Figure 7.7 Production of hydrocracking catalyst similar to Shell catalyst—Section 100 (zeolite Y synthesis)

Figure 7.7 Production of hydrocracking catalyst similar to Shell catalyst—Section 200 (zeolite Y ion exchange and dealumination)

Figure 7.7 Production of hydrocracking catalyst similar to Shell catalyst—Section 300 (amorphous silica alumina synthesis)

Figure 7.7 Production of hydrocracking catalyst similar to Shell catalyst—Section 400 (zeolite beta synthesis)

Figure 7.7 Production of hydrocracking catalyst similar to Shell catalyst—Section 500 (carrier synthesis)

Figure 7.7 Production of hydrocracking catalyst similar to Shell catalyst—Section 600 (catalyst production and finishing)