PEP Report 18D

Polyethylene Terephthalate (PET)

Susan Bell, Research and Analysis Associate Director

Abstract

Polyethylene terephthalate, commonly referred to as PET or simply polyester, is used to make products such as polyester fibers, PET packaging resins, and oriented PET (OPET) film. In 2016, world consumption of PET polymer was about 67.2 million tons. The polyester fiber segment accounted for about 65% of the global demand in 2016. The next largest end-use segment—packaging resin—makes up about 30% of total PET polymer consumption.

Since our last PEP Report on PET in 2006—PEP Report 18C, Polyethylene Terephthalate (September 2006)—continued process improvements have included larger-capacity PET plants, about 1 million tons per year. In 2006, a worldscale PET plant was about 450,000 tons per year. In addition, process improvement has resulted in substantial reduction of CAPEX and OPEX involved in production of PET solid-state resin.

In the current report, we discuss current production processes to produce PET resin grades for packaging or bottles. Features and differences among processes are summarized. The status of PET process licensors and what they offer are compared. A brief market overview summarizes the global supply and demand and end-use markets and demand drivers. The report presents the production economics for producing PET packaging resins by:

- INVISTA continuous polymerization PET process
- Polymetrix (Buhler) EcoSphere™ SSP process
- Uhde Inventa-Fischer Melt-to-Resin (MTR®) process
- Integrated INVISTA continuous polymerization PET—Polymetrix (Buhler) EcoSphere™ SSP process
Contents

1. Introduction 10
2. Summary 13
 - Introduction 13
 - Industrial aspects 13
 - World demand 13
 - PET applications 14
 - PET production capacity 14
 - PET producers 14
 - Process licensors and process owners 15
 - Technical aspects 16
 - Process technology 16
 - INVISTA continuous polymerization PET process 17
 - Polymetrix (Buhler) EcoSphere™ SSP process 17
 - Uhde Inventa-Fischer Melt-to-Resin (MTR®) process 18
 - Economic aspects 18
 - Capital cost comparison 18
 - Production cost comparison 20
3. Industry status 22
 - Introduction 22
 - PET applications 22
 - PET demand and growth 25
 - PET production capacity 27
 - PET price 28
 - PET producers 29
 - PET technology licensors or process owners 31
 - Alpek 31
 - AQUAFIL Engineering GmbH 32
 - China Kunlun Contracting and Engineering Corporation (CKCEC) 32
 - Hitachi, Ltd. 32
 - Huitong Chemical Engineering Technique Co., Ltd. 33
 - INVISTA Performance Technologies (IPT) 33
 - JOYOU Chemical Technology and Engineering Co., Ltd. 36
 - Mossi & Ghisolfi (M&G) Group 37
 - POLYMETRIX 38
 - Technip Zimmer 39
 - Uhde Inventa-Fischer 39
 - UOP 40
4. Technology 41
 - Introduction 41
 - PET properties 41
 - PET value chain 41
 - Purified terephthalic acid (PTA) production 42
 - Crude terephthalic acid production 43
 - TPA purification 44
 - BP new generation process for PTA production 46
 - Medium terephthalic acid (MTA) production 46
Polyethylene terephthalate (PET) production 48
Esterification or transesterification 48
Melt-phase polycondensation 50
Catalysts and additives 50
Degradation reactions and other side-reactions 52
Conventional process for bottle-grade PET resin production 53
Melt polycondensation processes for PET production 54
 Hitachi PET process 54
 Technip Zimmer standard melt polycondensation process 58
 INVISTA Performance Technologies (IPT) polyester polymerization process 60
 AQUAFIL two-reactor polyester technology 64
 China Textile Industrial Engineering Institute (CTIEI) PET process 64
 Huitong Chemical Engineering Technique PET process 64
 JOYOU Chemical Technology and Engineering Co., Ltd. 64
Pelletizing systems 65
Solid-state polymerization (SSP) processes 66
High IV PET (bottle-grade PET) production without SSP 71
 Alpek/Grupo Petromex (formerly Eastman) IntegRex® PET (iPET®) technology 72
 Uhde Inventa-Fischer Melt-to-Resin (MTR®) process 74
 Technip Zimmer Direct High IV (DHI) process 78

5 Polyethylene terephthalate (IV 0.60 dL/g) by a process similar to INVISTA CP process 80
 Introduction 80
 Process description 80
 Offsites 88
 Section 100—Esterification section 88
 Section 200—Polycondensation section 88
 Process discussion 89
 Raw material 89
 Plant design capacity 90
 Onstream factor 90
 Esterification 90
 Prepolymerization 91
 Polycondensation 91
 Pelletization 91
 Additives 92
 Material of construction 92
 Waste treatment 92
 Cost estimates for production of PET chips (IV 0.6 dL/g) 93
 Capital costs 93
 PET chips (IV 0.60 dL/g) production costs 98
 Cost estimates for production of PET polymer melt (IV 0.6 dL/g) 100
 Capital costs 100
 PET polymer melt (IV 0.60 dL/g) production costs 103

6 Polyethylene terephthalate (bottle-grade resin IV 0.82 dL/g) by a process similar to Polymetrix EcoSphere™ SSP melt-to-pellet crystallization process 105
 Introduction 105
 Process description 105
 Section 100—Pelletization section 111
 Section 200—Solid-state polymerization section 111
 Process discussion 112
 Raw material 112
 Plant design capacity 112
 Onstream factor 112
 Pelletization 112
 Solid state polymerization 113
Material of construction 114
Waste treatment 114
Cost estimates 114
Capital costs 114
Bottle-grade PET production costs from PET polymer melt by a process similar to Polymetrix EcoSphere™ SSP process 119

7 Polyethylene terephthalate (bottle-grade resin IV 0.82 dL/g) by a process similar to INVISTA CP process with Polymetrix SSP process 121
Introduction 121
Process description 121
Offsites 132
Section 100—Esterification section 132
Section 200—Polycondensation section 133
Section 300—Solid-state polymerization section 133
Process discussion 134
Raw material 134
Plant design capacity 135
Onstream factor 135
Esterification 135
Prepolymerization 135
Polycondensation 136
Pelletization 136
Solid state polymerization 136
Additives 138
Material of construction 138
Waste treatment 138
Cost estimates 139
Capital costs 139
Bottle-grade PET production costs 144

8 Polyethylene terephthalate (bottle-grade resin IV 0.82 dL/g) by a process similar to Uhde Inventa-Fischer Melt-to-Resin (MTR®) process 147
Introduction 147
Process description 147
Offsites 154
Section 100—Esterification and prepolycondensation 154
Section 200—Polycondensation section 156
Process discussion 156
Raw material 156
Plant design capacity 157
Onstream factor 157
ESPREE® reactor 157
Polycondensation 158
Granulation and chip conditioning 159
Material of construction 160
Waste treatment 160
Cost estimates 160
Capital costs 160
Bottle-grade PET production costs 165

Appendix A—Patent summaries 167
Appendix B—Design and cost basis 176
Design conditions 177
Site location 177
Facility site basis 177
Cost bases 177
Capital investment 177
Tables

Table 2.1 Leading global producers of PET melt-phase resins—2016
Table 2.2 Leading global producers of PET bottle resins—2016
Table 2.3 Process licensors/technology owners
Table 2.4 Capital intensity for worldscale 650 ktpy PET plant
Table 2.5 PET production costs
Table 3.1 PET bottle resin price
Table 3.2 Polyester fiber price
Table 3.3 Leading global producers of PET melt-phase resins—2016
Table 3.4 Leading global producers of PET bottle resins—2016
Table 3.5 Leading global producers of polyester textile fibers—2016
Table 3.6 Leading US producers of PET melt-phase resins—2016
Table 3.7 PET plants using Hitachi PET process
Table 3.8 Plants using INVISTA polyester technology
Table 3.9 Large PET plants using INVISTA technology
Table 3.10 PET plants using POLYMETRIX SSP
Table 3.11 PET plants using Uhde Inventa Fischer Melt-to-Resin (MTR®) process
Table 4.1 Typical composition of CTA
Table 4.2 Typical composition of PTA
Table 4.3 Typical specification of Eastman PTA
Table 4.4 Typical specification of polyester-grade EG
Table 5.1 Polyethylene terephthalate (IV 0.60 dL/g) by a process similar to INVISTA CP process—Design bases
Table 5.2 Polyethylene terephthalate (IV 0.60 dL/g) by a process similar to INVISTA CP process—Major stream flows
Table 5.3 Polyethylene terephthalate (IV 0.60 dL/g) by a process similar to INVISTA CP process—Major equipment
Table 5.4 Polyethylene terephthalate (IV 0.60 dL/g) by a process similar to INVISTA CP process—Utilities summary
Table 5.5 Typical composition of PTA
Table 5.6 Typical specification of polyester-grade EG
Table 5.7 Summary of major waste streams
Table 5.8 Polyethylene terephthalate chips (IV 0.60 dL/g) by a process similar to INVISTA CP process—Total capital investment
Table 5.9 Polyethylene terephthalate chips (IV 0.60 dL/g) by a process similar to INVISTA CP process—Production costs
Table 5.10 Polyethylene terephthalate polymer melt (IV 0.60 dL/g) by a process similar to INVISTA CP process—Total capital investment
Table 5.11 Polyethylene terephthalate polymer melt (IV 0.60 dL/g) by a process similar to INVISTA CP process—Production costs
Table 5.12 Bottle-grade PET from PET polymer melt by a process similar to Polymetrix EcoSphere™ SSP process (IV 0.82 dL/g)—Design bases
Table 5.13 Bottle-grade PET from PET polymer melt by a process similar to Polymetrix EcoSphere™ SSP process (IV 0.82 dL/g)—Major stream flows

© 2017 IHS

December 2017
Table 6.3 Bottle-grade PET from PET polymer melt by a process similar to Polymetrix EcoSphere™ SSP process (IV 0.82 dL/g)—Major equipment 109
Table 6.4 Bottle-grade PET from PET polymer melt by a process similar to Polymetrix EcoSphere™ SSP process (IV 0.82 dL/g)—Utilities summary 111
Table 6.5 Summary of major waste streams 114
Table 6.6 Bottle-grade PET chip from PET polymer melt by a process similar to Polymetrix EcoSphere™ SSP process (IV 0.82 dL/g) 117
Table 6.7 Bottle-grade PET chips from PET polymer melt by a process similar to Polymetrix EcoSphere™ SSP process (IV 0.82 dL/g) 118
Table 6.8 Bottle-grade PET chips from PET polymer melt by a process similar to Polymetrix EcoSphere™ SSP process (IV 0.82 dL/g)—Production costs 119
Table 7.1 PET by a process similar to INVISTA CP process and Polymetrix EcoSphere™ SSP process (IV 0.82 dL/g)—Design bases 122
Table 7.2 PET by a process similar to INVISTA CP process and Polymetrix EcoSphere™ SSP process (IV 0.82 dL/g)—Major stream flows 123
Table 7.3 PET by a process similar to INVISTA CP process and Polymetrix EcoSphere™ SSP process (IV 0.82 dL/g)—Major equipment 128
Table 7.4 PET by a process similar to INVISTA CP process and Polymetrix EcoSphere™ SSP process (IV 0.82 dL/g)—Utilities summary 132
Table 7.5 Typical composition of PTA 134
Table 7.6 Typical specification of polyester-grade EG 134
Table 7.7 Summary of major waste streams 138
Table 7.8 PET by a process similar to INVISTA CP process and Polymetrix EcoSphere™ SSP process (IV 0.82 dL/g) 142
Table 7.9 PET by a process similar to INVISTA CP process and Polymetrix EcoSphere™ SSP process (IV 0.82 dL/g) 143
Table 7.10 PET by a process similar to INVISTA CP process and Polymetrix EcoSphere™ SSP process (IV 0.82 dL/g)—Production costs 144
Table 7.11 PET by a process similar to INVISTA CP process and Polymetrix EcoSphere™ SSP process (IV 0.82 dL/g)—Production costs for 1,300 ktpy PET production based on two production lines (2x650 ktpy) 146
Table 8.1 Polyethylene terephthalate (bottle-grade resin IV 0.82 dL/g) by a process similar to Uhde Inventa-Fischer Melt-to-Resin process—Design bases 148
Table 8.2 Polyethylene terephthalate (bottle-grade resin IV 0.82 dL/g) by a process similar to Uhde Inventa-Fischer Melt-to-Resin process—Major stream flows 149
Table 8.3 Polyethylene terephthalate (bottle-grade resin IV 0.82 dL/g) by a process similar to Uhde Inventa-Fischer Melt-to-Resin process—Major equipment 151
Table 8.4 Polyethylene terephthalate (bottle-grade resin IV 0.82 dL/g) by a process similar to Uhde Inventa-Fischer Melt-to-Resin process—Utilities summary 154
Table 8.5 Typical composition of PTA 156
Table 8.6 Typical specification of polyester-grade EG 157
Table 8.7 Summary of major waste streams 160
Table 8.8 Polyethylene terephthalate (bottle-grade resin IV 0.82 dL/g) by a process similar to Uhde Inventa-Fischer Melt-to-Resin process 163
Table 8.9 Polyethylene terephthalate (bottle-grade resin IV 0.82 dL/g) by a process similar to Uhde Inventa-Fischer Melt-to-Resin process 164
Table 8.10 Polyethylene terephthalate (bottle-grade resin IV 0.82 dL/g) by a process similar to Uhde Inventa-Fischer Melt-to-Resin process—Production costs 165

Figures

Figure 1.1 Molecular structures of terephthalic acid, ethylene glycol, and polyethylene terephthalate 10
Figure 2.1 PET demand by region—2016 13
Figure 2.2 PET world consumption by application—2016 14
Figure 2.3 Effect of plant size on capital intensity 19
Figure 2.4 Effect of plant size on production costs 21
Figure 2.5 Effect of plant size on product values (15% ROI) 21
Figure 3.1 PET world consumption by application—2016 23
Figure 3.2 PET North America consumption by application—2016 23
Figure 3.3 PET Northeast Asia consumption by application—2016 24
Figure 3.4 Breakdown of polyester fiber applications—2016 25
Figure 3.5 PET demand by region—2016 26
Figure 3.6 Polyester fiber demand by region—2016 26
Figure 3.7 PET packaging resin demand by region—2016 27
Figure 3.8 PET melt-phase resin production capacity by region—2016 28
Figure 4.1 Structure of polyethylene terephthalate (PET) 41
Figure 4.2 Integrated PET value chain 42
Figure 4.3 Block flow diagram for CTA production 43
Figure 4.4 Block flow diagram for PTA production 45
Figure 4.5 Block flow diagram for EPTA production by the IntegRex® PTA process 47
Figure 4.6 PET comonomers 50
Figure 4.7 Block flow diagram for a conventional process to produce bottle-grade PET resin 53
Figure 4.8 Hitachi three-drum PET production process (US 6096838) 55
Figure 4.9 Hitachi PET production process—First reactor (US 6096838) 56
Figure 4.10 Hitachi PET production process—Second reactor (US 6096838) 57
Figure 4.11 Hitachi PET production process—Third reactor (US 6096838) 58
Figure 4.12 Block flow diagram for Zimmer standard melt polycondensation process to produce PET resin 58
Figure 4.13 Simplified diagram of Zimmer three-reactor process to produce PET resin 59
Figure 4.14 Zimmer’s prepolymerization reactor for three-reactor PET process (US 7244806) 60
Figure 4.15 INVISTA polyester polymerization process 61
Figure 4.16 INVISTA’s variable pressure upflow prepolymerizer (UFPP) (US 20150051367) 63
Figure 4.17 AQUAFIL two-reactor PET process 64
Figure 4.18 Polymetrix SSP stand-alone process 68
Figure 4.19 M&G Easy-up® process (US 8293850) 70
Figure 4.20 Zimmer’s Crystal SSP process 71
Figure 4.21 Block flow diagram of Alpek/Grupo Petrotemex (formerly Eastman) IntegRex® PET (iPET®) to produce bottle-grade PET resin 73
Figure 4.22 Esterification system using heat exchanger (US 7834109) 74
Figure 4.23 Simplified flow diagram of Uhde Inventa Fischer’s Melt-to-Resin (MTR®) process to produce bottle-grade PET resin 75
Figure 4.24 Uhde Inventa Fischer’s ESPREE® reactor (US 8252888) 76
Figure 4.25 Uhde Inventa Fischer’s DISCAGE® reactor (US 8252888) 77
Figure 4.26 Zimmer Direct High IV (DHI) process 79
Figure 5.1 Polyethylene terephthalate (IV 0.60 dL/g) by a process similar to INVISTA CP process (sheet 1 of 2) 194
Figure 5.1 Polyethylene terephthalate (IV 0.60 dL/g) by a process similar to INVISTA CP process (sheet 2 of 2) 195
Figure 6.1 Bottle-grade PET from PET polymer melt by a process similar to Polymetrix EcoSphere™ SSP process (IV 0.82 dL/g) 196
Figure 7.1 Polyethylene terephthalate by a process similar to INVISTA CP process and Polymetrix EcoSphere™ SSP process (IV 0.82 dL/g) (sheet 1 of 3) 197
Figure 7.1 Polyethylene terephthalate by a process similar to INVISTA CP process and Polymetrix EcoSphere™ SSP process (IV 0.82 dL/g) (sheet 2 of 3) 198
Figure 7.1 Polyethylene terephthalate by a process similar to INVISTA CP process and Polymetrix EcoSphere™ SSP process (IV 0.82 dL/g) (sheet 3 of 3) 199
Figure 8.1 Polyethylene terephthalate (bottle-grade resin IV 0.82 dL/g) by a process similar to Uhde Inventa-Fischer Melt-to-Resin process (sheet 1 of 2) 200
Figure 8.1 Polyethylene terephthalate (bottle-grade resin IV 0.82 dL/g) by a process similar to Uhde Inventa-Fischer Melt-to-Resin process (sheet 2 of 2) 201
IHS Customer Care:

Americas: +1 800 IHS CARE (+1 800 447 2273); CustomerCare@ihs.com
Europe, Middle East, and Africa: +44 (0) 1344 328 300; Customer.Support@ihs.com
Asia and the Pacific Rim: +604 291 3600; SupportAPAC@ihs.com