Abstract

Fluid catalytic cracking (FCC) has been a major refinery conversion process for more than seven decades. The technology is mature, but it continues to evolve in the areas of mechanical reliability, feedstock and operational flexibility, and meeting regulatory requirements. While FCC units have traditionally been operated to maximize gasoline or distillate production, interest in maximizing light olefins, particularly propylene, has gained traction in recent decades. FCC catalyst formulation and process technology improvements now give refiners the flexibility to boost propylene yields from traditional levels of 4–6 wt% to beyond 20 wt%. Slowing propylene supply growth from steam cracking—the principal source for propylene production—opens up potential opportunities for FCC to help fill the mounting propylene supply-demand gap.

This report provides an overview of fluid catalytic cracking developments in catalyst, process, and hardware technologies with a focus on high olefins processes. A general review of the technical field and recent process developments is included for several primary licensors in the space. Detailed technical and economic evaluations are presented for three high olefins FCC technologies from leading licensors from a market share perspective. Specific assessments are provided for the following technologies:

- KBR MAXOFIN™
- UOP PetroFCC™
- CB&I/Lummus Selected Component Cracking (SCC)

The analysis and technoeconomic design results that follow are based on an FCC unit that processes 40,000 barrel per day of vacuum gas oil feed. Alternative investment and production cost estimates are also provided for plant capacities that are half and double the base case. While the capital and production cost results herein are presented on a US Gulf Coast basis, the accompanying iPEP Navigator Excel-based data module (available with the electronic version of this report) allows for viewing results for other major regions along with conversion between English and metric units.
Contents

1 Introduction 11

2 Summary 12
 Industry aspects 12
 Technical aspects 13
 KBR MAXOFIN™ 15
 UOP PetroFCC™ 15
 CB&I/Lummus Selected Component Cracking (SCC) 16
 Economic aspects 16

3 Industry status 18
 Refined products 19
 Diesel 20
 Gasoline 21
 Residual fuel oil 22
 Naphtha 23
 Propylene 24
 Catalytic cracking capacity 25

4 Technology review 27
 Feedstocks 27
 Products 30
 Dry gas 30
 LPG 31
 Gasoline 31
 Light cycle oil 31
 Heavy cycle oil and slurry oil 31
 Chemistry 32
 Basic reactions 33
 Hydrocarbon cracking (β scission) 33
 Thermal cracking 34
 Hydrogen transfer 34
 Coke formation 35
 Coke combustion 35
 Sulfur compound cracking 35
 NOx formation mechanism 37
 Thermodynamics of FCC reactions 40
 Cracking kinetics 40
 Catalysts 43
 Zeolite structure 43
 Catalyst matrix 44
 Key characteristics 45
 Manufacturing 45
 Additives 46
 ZSM-5 46
 NOx 47
 SOx 48
Gasoline sulfur 48
Metal traps 49
Bottoms cracking 49
Selected commercial offerings 49
Environmental 52
FCC gasoline sulfur reduction 52
Feedstock hydrodesulfurization 52
Gasoline end point reduction 53
Post-treatment 53
Flue gas emissions and control 54
Carbon monoxide (CO) 56
SO₂ 56
NOₓ 57
Particulates 60
Hardware and configuration 62
Feed injection 62
Riser 62
Riser termination 63
Catalyst stripping 63
Standpipes 64
Regeneration 65
Catalyst cooler 66
Oxygen enrichment 66
Third-stage separator 67
Power and heat recovery 67
Main fractionator 67
Vapor recovery section 68
Maximizing FCC propylene 69
Feed quality 69
Reactor temperature 70
Hydrocarbon partial pressure 70
Hydrogen transfer reactions 70
Catalyst-to-oil ratio 70
ZSM-5 catalyst additive 70
Naphtha cracking 70
Other considerations 71
Licensor technology offerings 71
KBR 71
Orthoflow™ converter 71
ATOMAX™ feed injection 73
Riser quench 74
Riser termination 75
DynaFlux™ stripping 76
Regenerator 78
Catalyst cooler 80
CycloFines™ third-stage separator 82
MagnaCat™ magnetic catalyst separation 83
MAXOFIN™ process 84
Other catalytic olefin processes 86
Other developments 88
UOP 89
Optimix™ feed injection 89
Vortex separator system 92
Advanced fluidization stripping 94
RxCat™ catalyst recycle 95
<table>
<thead>
<tr>
<th>Process Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regenerator</td>
<td>96</td>
</tr>
<tr>
<td>Catalyst cooler</td>
<td>99</td>
</tr>
<tr>
<td>Third-stage separation</td>
<td>100</td>
</tr>
<tr>
<td>PetroFCC™ process</td>
<td>101</td>
</tr>
<tr>
<td>RxPro™ process</td>
<td>102</td>
</tr>
<tr>
<td>MSCC process</td>
<td>103</td>
</tr>
<tr>
<td>RFCC process</td>
<td>104</td>
</tr>
<tr>
<td>Other developments</td>
<td>105</td>
</tr>
<tr>
<td>CB&I/Lummus</td>
<td>108</td>
</tr>
<tr>
<td>Micro-Jet™ feed injectors</td>
<td>108</td>
</tr>
<tr>
<td>ModGrid™ catalyst stripper</td>
<td>108</td>
</tr>
<tr>
<td>Riser termination</td>
<td>109</td>
</tr>
<tr>
<td>Multistage orifice (MSO) air distributor</td>
<td>110</td>
</tr>
<tr>
<td>Catalyst cooler</td>
<td>111</td>
</tr>
<tr>
<td>SCC process</td>
<td>112</td>
</tr>
<tr>
<td>IndmaxSM process</td>
<td>114</td>
</tr>
<tr>
<td>Other developments</td>
<td>115</td>
</tr>
<tr>
<td>Axens/Technip</td>
<td>116</td>
</tr>
<tr>
<td>Feed injection</td>
<td>116</td>
</tr>
<tr>
<td>Riser termination</td>
<td>117</td>
</tr>
<tr>
<td>Stripper</td>
<td>119</td>
</tr>
<tr>
<td>Regenerator</td>
<td>120</td>
</tr>
<tr>
<td>Catalyst cooler</td>
<td>121</td>
</tr>
<tr>
<td>R2R™ process</td>
<td>122</td>
</tr>
<tr>
<td>R2P™ process</td>
<td>124</td>
</tr>
<tr>
<td>HP-FCC process</td>
<td>124</td>
</tr>
<tr>
<td>HS-FCC process</td>
<td>125</td>
</tr>
<tr>
<td>FlexEne™ process</td>
<td>127</td>
</tr>
<tr>
<td>Other developments</td>
<td>128</td>
</tr>
<tr>
<td>Shell</td>
<td>129</td>
</tr>
<tr>
<td>Feed injection</td>
<td>129</td>
</tr>
<tr>
<td>Riser internals</td>
<td>130</td>
</tr>
<tr>
<td>Riser termination</td>
<td>131</td>
</tr>
<tr>
<td>PentaFlow™ stripping</td>
<td>132</td>
</tr>
<tr>
<td>Standpipe flow</td>
<td>133</td>
</tr>
<tr>
<td>Regenerator</td>
<td>134</td>
</tr>
<tr>
<td>Third-stage separator</td>
<td>135</td>
</tr>
<tr>
<td>FCC process</td>
<td>137</td>
</tr>
<tr>
<td>MILOS process</td>
<td>137</td>
</tr>
<tr>
<td>Sinopec</td>
<td>138</td>
</tr>
<tr>
<td>Deep catalytic cracking (DCC)</td>
<td>138</td>
</tr>
<tr>
<td>Catalytic pyrolysis process (CPP)</td>
<td>139</td>
</tr>
<tr>
<td>Flexible dual-riser FCC process (DFCC-III)</td>
<td>140</td>
</tr>
</tbody>
</table>

5 **Propylene via KBR MAXOFIN™ process** 141

Process description 141

- Section 100—Cracking and fractionation 141
- Section 200—Vapor recovery 143
- Section 300—Propylene recovery 144

Process discussion 152

- Feedstock 152
- Cracking section 153
- Vapor recovery section 153
- Propylene recovery section 154
- Environment 154
- Optimization 155
Cost estimates 155
Capital costs 155
Production costs 156

6 Propylene via UOP PetroFCC™ process 162
Process description 162
Section 100—Cracking and fractionation 162
Section 200—Vapor recovery 164
Section 300—Propylene recovery 165
Process discussion 174
Feedstock 174
Cracking section 174
Vapor recovery section 175
Propylene recovery section 175
Environment 176
Optimization 176
Cost estimates 176
Capital costs 176
Production costs 177

7 Propylene via CB&I/Lummus SCC process 183
Process description 183
Section 100—Cracking and fractionation 183
Section 200—Vapor recovery 185
Section 300—Propylene recovery 186
Process discussion 194
Feedstock 195
Cracking section 195
Vapor recovery section 196
Propylene recovery section 196
Environment 196
Optimization 197
Cost estimates 197
Capital costs 197
Production costs 198

Appendix A—Patent summaries 204
Appendix B—Design and cost basis 222
Appendix C—Cited references 227
Appendix D—Patent references by company 241
Appendix E—Process flow diagrams 244

Tables

Table 2.1 Comparison of high olefin fluid catalytic cracking process conditions and features 15
Table 2.2 Comparison of high olefin fluid catalytic cracking investment and production costs 17
Table 3.1 Refinery capacity by region 26
Table 4.1 Mass-spec analysis of FCC feedstock 27
Table 4.2 Feedstock guidelines for residual FCC 28
Table 4.3 Distribution of sulfur compounds in FCC feedstocks 30
Table 4.4 Typical propylene quality specifications 31
Table 4.5 Aspen HYSYS® 21-lump kinetic model 43
Table 4.6 Selected commercial FCC catalysts 50
Table 4.7 Selected commercial FCC cocatalysts and additives 51
Table 4.8 United States FCCU air emission control requirements 56
Table 4.9 Post-regenerator NOx control technology comparison 58
Table 4.10 Selective catalytic reduction process conditions
Table 4.11 Riser termination considerations
Table 4.12 Regenerator oxygen enrichment impact
Table 4.13 Paulsboro stripper performance before and after FluxTube™ installation
Table 4.14 KBR MAXOFIN™ operating mode comparison
Table 4.15 KBR catalytic cracking olefin processes
Table 4.16 CB&I/Lummus Selected Component Cracking product yields
Table 4.17 CB&I/Lummus IndmaxSM typical operating conditions
Table 4.18 CB&I/Lummus IndmaxSM yield range
Table 4.19 Axens/Technip R2P™ yield comparison
Table 4.20 Sinopcc DCC operating parameter summary
Table 4.21 Sinopcc CPP operating parameter summary
Table 5.1 Propylene via KBR MAXOFIN™ FCC process—Design bases and assumptions
Table 5.2 Propylene via KBR MAXOFIN™ FCC process—Product yields
Table 5.3 Propylene via KBR MAXOFIN™ FCC process—Stream flows
Table 5.4 Propylene via KBR MAXOFIN™ FCC process—Major equipment
Table 5.5 Propylene via KBR MAXOFIN™ FCC process—Utilities summary
Table 5.6 Propylene via KBR MAXOFIN™ FCC process—Vacuum gas oil properties
Table 5.7 Propylene via KBR MAXOFIN™ FCC process—Total capital investment
Table 5.8 Propylene via KBR MAXOFIN™ FCC process—Total capital investment by section
Table 5.9 Propylene via KBR MAXOFIN™ FCC process—Production costs
Table 6.1 Propylene via UOP PetroFCC™ process—Design bases and assumptions
Table 6.2 Propylene via UOP PetroFCC™ process—Product yields
Table 6.3 Propylene via UOP PetroFCC™ process—Stream flows
Table 6.4 Propylene via UOP PetroFCC™ process—Major equipment
Table 6.5 Propylene via UOP PetroFCC™ process—Utilities summary
Table 6.6 Propylene via UOP PetroFCC™ process—Vacuum gas oil properties
Table 6.7 Propylene via UOP PetroFCC™ process—Total capital investment
Table 6.8 Propylene via UOP PetroFCC™ process—Total capital investment by section
Table 6.9 Propylene via UOP PetroFCC™ process—Production costs
Table 7.1 Propylene via CB&I/Lummus SCC FCC process—Design bases and assumptions
Table 7.2 Propylene via CB&I/Lummus SCC FCC process—Product yields
Table 7.3 Propylene via CB&I/Lummus SCC FCC process—Stream flows
Table 7.4 Propylene via CB&I/Lummus SCC FCC process—Major equipment
Table 7.5 Propylene via CB&I/Lummus SCC FCC process—Utilities summary
Table 7.6 Propylene via CB&I/Lummus SCC FCC process—Vacuum gas oil properties
Table 7.7 Propylene via CB&I/Lummus SCC FCC process—Total capital investment
Table 7.8 Propylene via CB&I/Lummus SCC FCC process—Total capital investment by section
Table 7.9 Propylene via CB&I/Lummus SCC FCC process—Production costs

Figures

Figure 2.1 Typical high olefins fluid catalytic cracking block flow diagram
Figure 2.2 Comparison of high olefin fluid catalytic cracking production costs
Figure 3.1 FCC in the fuel refinery—Block flow diagram
Figure 3.2 GDP growth drives refined product demand growth
Figure 3.3 Global diesel demand
Figure 3.4 Global gasoline demand
Figure 3.5 Global residual fuel oil demand
Figure 3.6 Global naphtha demand
Figure 3.7 World PG/CG propylene production by technology
Figure 3.8 World PG/CG propylene demand
Figure 3.9 Regional PG/CG propylene capacity
Figure 4.1 Main reactions in FCC
Figure 4.2 Reaction scheme for cracking sulfur compounds
Figure 4.3 Structure of faujasite Y-type zeolite
Figure 4.4 Common FCC catalyst stripping designs
Figure 4.5 KBR Orthoflow™ converter
Figure 4.6 KBR ATOMAX-2™ nozzle
Figure 4.7 KBR ATOMAX-2™ injection cone
Figure 4.8 KBR riser quench temperature profile
Figure 4.9 KBR cyclones with integrated stripping
Figure 4.10 KBR Flux Tubes™ stripping baffles
Figure 4.11 KBR Lateral Mixing Elements™ stripping baffles
Figure 4.12 KBR self-aerating spent catalyst distributor
Figure 4.13 KBR RegenMax™ staged regeneration
Figure 4.14 KBR catalyst cooler
Figure 4.15 KBR CycloFines™ third-stage separator
Figure 4.16 KBR MagnaCat™ catalyst separation process
Figure 4.17 KBR MAXOFIN™ converter
Figure 4.18 KBR Superflex™ process reaction section
Figure 4.19 KBR Superflex™ process separation section
Figure 4.20 UOP Optimix™ feed distributor
Figure 4.21 UOP Optimix™ nozzle tip designs
Figure 4.22 UOP dual radius feed distribution
Figure 4.23 UOP vortex separation system (VSS™)
Figure 4.24 UOP AF™ stripper internals
Figure 4.29 UOP piped spent catalyst distributor
Figure 4.30 UOP combustor-style regenerator
Figure 4.31 UOP two-stage regenerator
Figure 4.32 UOP catalyst cooler
Figure 4.33 UOP third-stage separator
Figure 4.25 UOP PetroFCC™ process
Figure 4.26 UOP RxPro™ process
Figure 4.27 UOP MSCC reactor
Figure 4.28 UOP RFCC process
Figure 4.34 CB&I/Lummus Micro-Jet™ feed injector
Figure 4.35 CB&I/Lummus ModGrid™ stripper baffle
Figure 4.36 CB&I/Lummus direct coupled cyclones
Figure 4.37 CB&I/Lummus multi-stage orifice air distributor
Figure 4.38 CB&I/Lummus and LPEC catalyst cooler configurations
Figure 4.39 CB&I/Lummus Selected Component Cracking process
Figure 4.40 Axens/Technip feed nozzle
Figure 4.41 Axens/Technip riser separation system
Figure 4.42 Axens/Technip stripper baffles
Figure 4.43 Axens/Technip catalyst cooler
Figure 4.44 Axens/Technip R2R™ technology
Figure 4.45 Axens/Technip HS-FCC™ down-flow reactor
Figure 4.46 Axens/Technip HS-FCC™ reaction product separator
Figure 4.47 Axens FlexEne™ process
Figure 4.48 Shell feed injection nozzle
Figure 4.49 Shell HIB ring internals
Figure 4.50 Shell riser termination
Figure 4.51 Shell PentaFlow™ stripping baffle
Figure 4.52 Shell catalyst circulation enhancement technology
Figure 4.53 Shell regenerator technology
Figure 4.54 Shell third-stage separator
Figure 4.55 Shell typical FCC configuration
Figure 5.2 Propylene via KBR MAXOFIN™ FCC process—Effect of plant capacity on investment costs
Figure 5.3 Propylene via KBR MAXOFIN™ FCC process—Net production cost as a function of operating level 157
Figure 5.4 Propylene via KBR MAXOFIN™ FCC process—Product value as a function of operating level 157
Figure 6.2 Propylene via UOP PetroFCC™ process—Effect of plant capacity on investment costs 177
Figure 6.3 Propylene via UOP PetroFCC™ process—Net production cost as a function of operating level 178
Figure 6.4 Propylene via UOP PetroFCC™ process—Product value as a function of operating level 178
Figure 7.2 Propylene via CB&I/Lummus SCC FCC process—Effect of plant capacity on investment costs 198
Figure 7.3 Propylene via CB&I/Lummus SCC FCC process—Net production cost as a function of operating level 199
Figure 7.4 Propylene via CB&I/Lummus SCC FCC process—Product value as a function of operating level 199
Figure 5.1 Propylene via KBR MAXOFIN™ FCC process—Process flow diagram 245
Figure 6.1 Propylene via UOP PetroFCC™ process—Process flow diagram 248
Figure 7.1 Propylene via CB&I/Lummus SCC FCC process—Process flow diagram 251