PEP Report 211C

Hydrocracking by Slurry Process

Gajendra Kumar, Principal Analyst

Abstract

Rising demand for transportation fuels and petrochemicals as well as the rising supply of heavy residue of crude oil have resulted in a renewed interest in the processing of heavy residue to generate useful lighter fuels and chemicals. Nonconventional feeds such as vacuum residue and heavy oils have shown high potential as alternate sources for the production of high-value transportation fuels, as these are abundantly available. These feeds are of low quality because of the presence of impurities like Conradson carbon residue (CCR), asphaltenes, sulfur, nitrogen, and heavy metals.

Several process technologies have been developed to upgrade these feeds, which can be broadly divided into carbon rejection and hydrogen addition processes. Carbon rejection processes mainly are visbreaking, steam cracking, fluid catalytic cracking, and coking, while hydrogen addition processes are hydrocracking, fixed-bed catalytic hydroconversion, ebullated catalytic bed, slurry bed catalytic hydroconversion, hydrovisbreaking, and hydropyrolysis.

Though coking, resid fluidized catalytic cracking (RFCC), and hydrocracking are the major commercial residue upgrading processes, slurry-phase hydrocracking is gaining popularity among refiners. PEP Report 228, Refinery Residue Updating (June 2000) covered the above-mentioned processes. In this report, we cover slurry-phase hydrocracking technology for upgrading vacuum residue and the production economics thereof. The main advantage of the slurry-based process is that it can process a variety of feedstocks from refinery residue with more than 90% conversion. Also, as dispersed catalyst is used in the reactor, it is not prone to plugging from coke.

In this design, we have presented our understanding of the process technology and production economics of the following slurry-phase hydrocracking technologies:

• Honeywell UOP’s Uniflex™
• KBR’s Veba Combi Cracker (VCC™)
• ENI’s slurry technology (EST)

We also describe our understanding of other slurry-phase hydrocracking technologies, such as the Chevron Lummus Global (CLG) LC-SLURRY process.
Contents

1. **Introduction** 10
2. **Summary** 12
 - General perspective on residue upgrading technologies 12
 - Commercial aspects 13
 - Technical aspects 14
 - Technologies for residue upgrade 14
 - Slurry hydrocracking 15
 - Operating conditions 16
 - Process summary 16
 - Process economics 17
 - Economics calculation modules for non-US regions 19
 - Other residue upgrading technologies 19
 - Carbon emissions and water usage 21
3. **Industry status** 23
 - Crude oil quality 23
 - Crude oil supply/demand 24
 - Refined products market 25
 - Refining capacity 26
 - Refining market impact from a 2020 marine fuel sulfur reduction 27
 - Impact on prices and refining margins 31
 - Hydrocracking market 33
4. **Technology review** 37
 - Refinery feedstock 38
 - Crude oil properties 39
 - Refinery products 40
 - Crude distillation 41
 - Refinery residue 41
 - Properties of refinery residue 42
 - Residue upgrading processes 44
 - Carbon rejection process 45
 - Hydrogen addition process 48
 - Fixed-bed hydrocracking 49
 - Ebullated-bed hydrocracking 50
 - LC-FINING 55
 - H-OilRC process 58
 - HC-OilDC process 59
 - HCAT® hydrocracking 60
 - STRONG technology 61
 - Slurry-phase hydrocracking 62
 - Microcat-RC™ process 63
 - MRH process 64
 - Slurry-bed process by China University of Petroleum 66
 - KOBELCO SPH 66
 - HDH technology 68
 - Super oil-cracking (SOC) technology 68
5 Slurry-phase hydrocracking via KBR VCC™ technology

KBR Veba Combi Cracker (VCC™) technology
Historical development of VCC™ technology
Principles of VCC™ technology
Catalyst
Value proposition for VCC™ technology
Slurry reactor hydrodynamics
Feedstock flexibility
Refinery integration
Coker versus VCC™ technology
Eni slurry technology (EST)
Historical development of EST technology
Principles of ENI slurry technology
Catalyst mechanism
Value proposition for Eni slurry technology
Commercial experience
UOP slurry hydrocracking process Uniflex™
Historical development of Uniflex™ technology
Principles of Uniflex™ technology
Catalyst
Value proposition for Uniflex™ technology
Comparison of residue conversion technologies
Commercial experience
LC-SLURRY process
Slurry hydrocracking process review
Chemistry
Residue hydrocracking mechanism
Reaction kinetics
Hydrocracking thermodynamics
Development of catalysts for slurry-phase hydrocracking
Oil-soluble catalyst
Water-soluble catalyst
Process variables in hydrocracking
Slurry-phase hydrocracking process conditions

6 Slurry-phase hydrocracking via Eni slurry technology (EST)

EST block diagram
EST technology design basis 128
EST process flow diagrams and process description 129
Section 100—Hydrocracking unit 130
Section 200—Product separation unit 131
Section 300—Solvent deasphalting unit 131
Process discussion 137
Feedstock 137
Reactor 138
Catalyst 138
Hydrogen supply 138
Storage 138
Offsites and miscellaneous package units 138
Recycle gas treatment unit 138
Hydrogen purification unit 139
Process waste effluent 139
Materials of construction 139
Cost estimates 142
Fixed capital costs 142
Production costs 143

7 Slurry-phase hydrocracking via UOP Uniflex™ technology 148
UOP Uniflex™ technology block diagram 148
Uniflex™ technology design basis 150
Feed and product properties 150
Uniflex™ process flow diagrams and process description 151
Section 100—Hydrocracking unit 152
Section 200—Product separation unit 153
Process discussion 158
Feedstock 158
Reactor 158
Catalyst 159
Hydrogen supply 159
Storage 159
Offsites and miscellaneous package units 159
Recycle gas treatment unit 159
Hydrogen purification unit 160
Process waste effluent 160
Materials of construction 160
Cost estimates 163
Fixed capital costs 163
Production costs 164

Appendix A—Patent summary table 168
Appendix B—Design and cost bases 174
Design conditions 175
Cost basis 175
Capital investment 175
Production costs 176
Effect of operating level on production costs 176
Appendix C—Cited references 178
Appendix D—Patent summaries by company 184
Appendix E—Process flow diagrams 186

Tables
Table 5.4 Diesel production via KBR VCC™ technology—Main stream flows

Table 5.5 Diesel production via KBR VCC™ technology—Major equipment

Table 5.6 Diesel production via KBR VCC™ technology—Utilities summary

Table 5.7 Diesel production via KBR VCC™ technology—Total capital investment

Table 5.8 Diesel production via KBR VCC™ technology—Capital investment by section

Table 5.9 Diesel production via KBR VCC™ technology—Production costs

Table 6.1 Eni slurry technology—Design bases and assumptions

Table 6.2 Feedstock and product properties

Table 6.3 Diesel production via Eni slurry technology—Main stream flows

Table 6.4 Diesel production via Eni slurry technology—Major equipment

Table 6.5 Diesel production via Eni slurry technology—Utilities summary

Table 6.6 Diesel production via Eni slurry technology—Total capital investment

Table 6.7 Diesel production via Eni slurry technology—Capital investment by section

Table 6.8 Diesel production via Eni slurry technology—Production costs

Table 7.1 UOP Uniflex™—Design bases and assumptions

Table 7.2 Feedstock properties

Table 7.3 Product properties

Table 7.4 Diesel production via UOP Uniflex™ technology—Main stream flows

Table 7.5 Typical red mud composition

Table 7.6 Diesel production via UOP Uniflex™ technology—Major equipment

Table 7.7 Diesel production via UOP Uniflex™ technology—Utilities summary

Table 7.8 Diesel production via UOP Uniflex™ technology—Total capital investment

Table 7.9 Diesel production via UOP Uniflex™ technology—Capital investment by section

Table 7.10 Diesel production via UOP Uniflex™ technology—Production costs

Figures

Figure 1.1 Typical yields from various types of crude oil

Figure 2.1 Production costs of diesel via slurry-phase hydrocracking processes in the US Gulf Coast

Figure 2.2 Water usage in slurry-phase hydrocracking processes in the US Gulf Coast

Figure 3.1 Crude oil density trends

Figure 3.2 Crude oil sulfur content trends

Figure 3.3 Global refined product demand—2016

Figure 3.4 World demand growth—Total refined products

Figure 3.5 International product light-heavy spreads

Figure 3.6 International light-heavy crude differentials

Figure 3.7 Long-term benchmark margin outlook (US Gulf Coast margins includes renewables identification number costs)

Figure 4.1 Block flow diagram for refinery

Figure 4.2 Schematic view of crude oil distillation and downstream processing

Figure 4.3 Composition and analysis of petroleum fractions

Figure 4.4 Hypothetical asphaltene molecule and its interaction with metalloporphyrins

Figure 4.5 Schematic representation of H-Oil ebullated-bed reactor

Figure 4.6 Schematic representation of LC-FINING ebullated-bed reactor

Figure 4.7 Catalyst offered by Criterion

Figure 4.9 LC-FINING with integrated HDT schematic

Figure 4.10 LC-MAX process schematic

Figure 4.11 H-Oilrc process schematic

Figure 4.12 H-Oildc process schematic

Figure 4.13 HCAT® process schematic

Figure 4.13 Microcat-RC™ process schematic

Figure 4.14 MRH process schematic

Figure 4.15 KOBELCO SPH schematic