Aromatics Upgrading Technologies

Process Economics Program Report 25E

December 2016

ihs.com

PEP Report 25E

Aromatics Upgrading Technologies

Rajesh Kumar Verma Principal Analyst

PEP Report 25E

Aromatics Upgrading Technologies

Rajesh Kumar Verma, Principal Analyst

Abstract

Transalkylation, disproportionation, alkylation, and dealkylation are the most widely used processes in a refinery complex for C₇, C₉, C₁₀ aromatics upgrading, and xylene isomerization is used to increase the *para*-xylene content of streams from low to high. Many licensors and technology developers provide process technologies and proprietary catalysts for these processes, each with advantages and disadvantages over other technologies. In this report, the technological advancements and production economics are updated for the following three processes:

- The UOP Tatoray[™] process for upgrading toluene, C₉, and C₁₀ aromatics, by catalytic disproportionation and transalkylation, to a commercial grade mix of xylene product (>98 wt% C₈ content) and high-purity benzene by-product (>99.9 wt% purity)
- The UOP isomerization process for isomerizing xylenes in a *para*-xylene-lean stream to provide a *para*-xylene-rich stream, by converting *meta* and *ortho*-xylenes to an equilibrium mixture of xylenes, with ethylbenzene either dealkylated to benzene or isomerized to xylenes.
- The CB&I Detol® process for converting a toluene-rich stream to high-purity benzene product.

This report also provides an industry review of *p*-xylene and benzene, including the market shares of various licensors for the selected processes, process PFDs, patent summaries, and an upfront Summary section.

For the process analyses, we evaluate and discuss patent and other non-proprietary information, particularly to extract key process conditions and parameters necessary to forming the design basis for each process. An Aspen simulation model is developed and engineering judgement is applied to define the detailed material and energy balances. Plant construction costs (CAPEX), including ISBL and OSBL costs, are estimated for each processes by individual equipment sizing and costing with the aid of IHS's proprietary software PEPCOST[®]. Operating costs are calculated based on unit consumption of raw materials, utilities, and direct costs as well as depreciation and return on investment.

Production economics presented in the report are based on cost data for the US Gulf Coast (USGC) region. However, an Excel-based data module iPEP NavigatorAromaticsUpgrading is included as an attachment to the electronic report, to allow our clients to convert the economics of the discussed upgrading processes to the corresponding economics in five other regions (Canada, China, Germany, Japan, and the Middle East).

1

Contents

1	Introduction	10
2	Summary	13
	Commercial aspects	13
	Benzene	14
	Xylenes	14
	C7A and C9A upgrading to benzene and xylene	16
	Process economics summary	16
	UOP's transalkylation process	17
	UOP's xylene isomerization process	18
	CB&I's Detol [®] process	18
	Process summary	18
3	Industry status	20
	Specifications of major streams in an aromatics complex	20
	Naphtha reformate	20
	Mixed xylenes	21
	Benzene	22
	<i>para-</i> Xylene	23
	Supply and demand	24
	Mixed xylenes	24
	Benzene	26
	Toluene	27
	Toluene disproportionation and hydrodealkylation	27
	List of producers and plant capacities	29
	Price trends for feedstock and products	36
4	Technology review	38
	Feedstock and products	38
	Aromatics complex unit configurations	39
	Aromatics complex process description	42
	Benzene and toluene recovery unit	43
	Toluene column	44
	Xylene, ortho-xylene, and heavy aromatics columns	44
	<i>p</i> -Xylene recovery unit	45
	Xylene isomerization unit	48
	Aromatics upgrading to xylene and benzene	50
	Overview	50
	Catalytic hydrodealkylation of toluene	50
	Thermal hydrodealkylation of toluene	50
	Toluene disproportionation and transalkylation of C7 and C9 aromatics	51
	Selective toluene disproportionation	52
	Toluene methylation	52
	Transalkylation process	53
	Chemistry	53
	Alkylation	57
	Hydrocracking	58

IHS™ CHEMICAL

COPYRIGHT NOTICE AND DISCLAIMER © 2016 IHS. For internal use of IHS dients only. No portion of this report may be reproduced, reused, or otherwise distributed in any form without prior written consent, with the exception of any internal client distribution as may be permitted in the license agreement between client and IHS. Content reproduced or redistributed with IHS permission must display IHS legal notices and attributions of authorship. The information contained herein is from sources considered reliable, but its accuracy and completeness are not warranted, nor are the opinions and analyses that are based upon it, and to the extent percenticate of the shall be that be accuracy and completeness are not warranted, nor are the opinions and analyses that are based upon it, and to the extent percenticular, please note that no representation or warrant is given as to the achievement or reasonableness of, and no reliance should be placed on, any projections, forecasts, estimates, or assumptions, and, due to various risks and uncertainties, actual events and results may differ materially from forecasts and statements of belief note herein. This report is not to be construed as legal or financial advice, and use of or reliance on any information in this publication is entirely at client's own risk. IHS and the IHS logo are trademarks of IHS.

Isomerization Ring saturation	58 59
Coking	59
Process variables	59
Temperature and pressure dependency	59
Feed quality	60
Reaction severity	61
Temperature	61
H ₂ partial pressure	62
Space velocity	62
Nethyl/phenyl or methyl/ring ratio in the feed	62
Process development	63
Major commercial processes	66
ExxonMobil's TransPlus SM process	66
ExxonMobil's toluene disproportionation process MTDP-3 SM	67
UOP TAC9™ process	68
GTC-Transalkylation process (GTC-TransAlk SM)	68
Catalyst development	69
Summary of technology development	76
Xylene isomerization	77
Chemistry	78
Xylene isomerization	78
Ethylbenzene conversion	79
Side reactions	79
Process variables	79
Temperature	79
H ₂ partial pressure and reactor pressure	80
H ₂ /HC ratio	80
Reaction severity	80
Space velocity	80
Process and catalyst development	80
Liquid phase xylene isomerization	81
Vapor phase xylene isomerization	81
Vapor phase isomerization without a hydrogen atmosphere	81
Vapor phase isomerization with a hydrogen atmosphere	81
Major commercial processes ExxonMobil's XyMax sm process	86 86
	88
Axens-Engelhard Octafining™ process GTC GT-IsomPX SM technology	88
JSC SIE Neftehim process	89
Summary of technology development	89
Toluene hydrodealkylation	90
Catalytic hydrodealkylation versus thermal hydrodealkylation	91
Chemistry	91
Side reactions	92
Process variables	94
Feed composition	94
Temperature	94
Pressure	95
Toluene conversion	95
H ₂ /HC ratio	95
Process and catalyst development	95
· · ·	

	Summary of technology development	98
5	UOP's transalkylation process	99
	Scope	99
	Process description	109
	Feed	109
	Reaction	110
	Product fractionation	110
	Process discussion	111
	Process scheme	111
	Catalyst	111
	Feed composition	112
	Reactor	112
	Recycle gas compressor	112
	Make-up H ₂	112
	Cost estimates	112
	Fixed capital costs	113
	Production costs	113
	Economic discussion	113
6	UOP's xylene isomerization process	119
	Scope	119
	Process description	126
	Feed section	126
	Reaction section	127
	Product fractionation section	127
	Process discussion	128
	Process scheme	128
	Catalyst	128
	Feed composition	128
	Reactor	128
	Recycle gas compressor	128
	Make-up H ₂	129
	Cost estimates	129
	Fixed capital costs	130
	Production costs	130
	Economic discussion	130
7	CB&I's Detol [®] process	136
	Scope	136
	Process description	144
	Feed section	144
	Reaction section	145
	Product fractionation section	146
	Process discussion	147
	Catalyst	147
	Feed composition	147
	Reactor	147
	Recycle gas compressor	147
	Make-up H ₂	147
	Cost estimates	147
	Fixed capital costs	148
	Production costs	148
	Economic discussion	148
Арр	endix A—Patent summaries	153

4

Appendix B—Design and cost basis	181
Design conditions	182
Cost basis	182
Capital investment	182
Production costs	183
Effect of operating level on production costs	184
Appendix C—Cited references	185
Appendix D—Patent references by company	195
Appendix E—Process flow diagrams	199

Tables

Table 2.1 Economics summary for the studied processes	17
Table 2.2 Process summary for the studied processes	19
Table 3.1 Major properties and composition of naphtha reformate	21
Table 3.2 Major specifications for mixed xylenes product	22
Table 3.3 Major specifications for benzene product	23
Table 3.4 Major specifications for <i>p</i> -xylene product	24
Table 3.5 World supply and demand for mixed xylene by region	25
Table 3.6 World supply and demand for individual C ₈ products by region in 2015 (ktpy)	25
Table 3.7 Consumption of xylene isomers by end use for 2015 (ktpy)	26
Table 3.8 World supply and demand for benzene by region in 2014 (ktpy)	26
Table 3.9 World supply and demand for toluene by region in 2015 (ktpy)	27
Table 3.10 Current and forecasted world production of benzene and xylene using different	
processes by region	28
Table 3.11 World mixed xylene production capacity of transalkylation/disproportionation	
processes	29
Table 3.12 World benzene production by transalkylation/disproportionation/HDA processes	32
Table 4.1 Freezing points for xylene isomers and related compounds in the C6–C9 range	47
Table 4.2 Reaction controlling functions in transalkylation and disproportionation chemistries	59
Table 4.3 Me/Ph ratios of transalkylation reaction mixture components	62
Table 4.4 Disproportionation of C7–C11 methylbenzenes over an aluminosilicate catalyst (US	
3350469)	70
Table 4.5 Results of C ₇ –C ₁₁ methylaromatics disproportionation over an aluminosilicate catalyst containing Re, Sn, and Ge (EP 1882728)	73
Table 4.6 Results of C7–C11 methylaromatics disproportionation over an aluminosilicate catalyst	
containing Re, Sn, and Ge as a function of temperature (EP 1882728)	74
Table 4.7 Operating conditions for commercialized transalkylation processes	77
Table 4.8 Major operating conditions for some commercialized xylene isomerization processes	90
Table 5.1 Design basis for the transalkylation process	100
Table 5.2 Toluene and C ₉ aromatics upgrading to benzene and xylene by UOP's Tatoray	
process—Major streams flows	101
Table 5.3 Toluene and C_9 aromatics upgrading to benzene and xylene by UOP's Tatoray	
process—Major equipment	107
Table 5.4 Toluene and C ₉ aromatics upgrading to benzene and xylene by UOP's Tatoray	
process—Utilities summary	109
Table 5.5 Toluene and C ₉ aromatics upgrading to benzene and xylene by UOP's Tatoray	
process—Total capital investment	115
Table 5.6 Toluene and C9 aromatics upgrading to benzene and xylene by UOP's Tatoray	
process—Production costs	116
Table 6.1 Design basis for the xylene isomerization process	120

Table 6.2 UOP's xylene isomerization process for upgrading <i>p</i> -xylene-lean feed to a <i>p</i> -xylene-rich stream—Major streams flows	121
Table 6.3 UOP's xylene isomerization process for upgrading <i>p</i> -xylene-lean feed to a <i>p</i> -xylene-rich stream—Major equipment	125
Table 6.4 UOP's xylene isomerization process for upgrading <i>p</i> -xylene-lean feed to a <i>p</i> -xylene-rich stream—Utilities summary	126
Table 6.5 UOP's xylene isomerization process for <i>p</i> -xylene-lean feed upgrading to <i>p</i> -xylene-rich stream—Total capital investment	132
Table 6.6 UOP's xylene isomerization process for <i>p</i> -xylene-lean feed upgrading to <i>p</i> -xylene-rich stream—Production costs	133
Table 7.1 Design basis for the toluene hydrodealkylation process	137
Table 7.2 CB&I's Detol process for upgrading toluene to benzene—Major streams flows	138
Table 7.3 CB&I's Detol process for upgrading toluene to benzene—Major equipment	143
Table 7.4 CB&I's Detol process for upgrading toluene to benzene—Utilities summary	144
Table 7.5 CB&I's Detol process for upgrading toluene to benzene—Total capital investment	149
Table 7.6 CB&I's Detol process for upgrading toluene to benzene—Production costs	150

Figures

Figure 1.1 Simplified block flow diagram of an aromatics complex simulated to derive the xylene	
isomerization and transalkylation unit's feed	12
Figure 2.1 World consumption of benzene by end use in 2014	14
Figure 2.2 World producers of mixed xylenes by region in 2015	15
Figure 3.1 Price trends for aromatics	37
Figure 4.1 Typical aromatics complex with a simple configuration	40
Figure 4.2 Typical aromatics complex with a complex configuration	41
Figure 4.3 Product slate flexibility for benzene and <i>p</i> -xylene	42
Figure 4.4 Typical bock diagram for BTX recovery unit	43
Figure 4.5 Block flow diagram of a typical <i>p</i> -xylene recovery unit (adsorption process)	46
Figure 4.6 Block flow diagram of a typical <i>p</i> -xylene recovery unit (crystallization process)	48
Figure 4.7 Block diagram of a typical xylene isomerization unit (UOP design)	50
Figure 4.8 Block flow diagram of a typical hydrodealkylation unit	51
Figure 4.9 Block flow diagram of a typical thermal hydrodealkylation unit (UOP design)	52
Figure 4.10 Block flow diagram of a typical toluene methylation process (GTC process)	53
Figure 4.11 Effect of C ₉ aromatics on overall product yield	61
Figure 4.12 Dependency of product selectivity on methyl/phenyl ratio in feed for transalkylation at	
equilibrium at 427°C	63
Figure 4.13 Two stage transalkylation process (US 6958425)	64
Figure 4.14 Transalkylation run results with and without a catalyst guard bed (US 7154014)	65
Figure 4.15 Effect of temperature on toluene conversion (US 6383967)	71
Figure 4.16 Effect of toluene conversion on para-xylene selectivity (US 6383967)	71
Figure 4.17 Effect of catalyst pretreatment on activity (US 7273828)	74
Figure 4.18 Effect of catalyst pretreatment on light ends yield (US 7273828)	75
Figure 4.19 Effect of C ₉ A in feed on product yield (BE 716016)	76
Figure 4.20 Integrated aromatics complex, including naphtha hydrotreating unit, reformer, xylene	
fractionation, transalkylation, xylene isomerization, ED unit, and <i>p</i> -xylene recovery	
unit (US 7405335)	82
Figure 4.21 Effect of EB conversion on <i>p</i> -xylene equilibrium conversion (US 20080146859, US	
20100125160)	85
Figure 4.22 Effect of system pressure on xylene loss (US 20080146859, US 20100125160)	86
Figure 4.23 ExxonMobil's dual-bed xylene isomerization process configuration	87
Figure 4.24 Overall heat of reaction for hydrodealkylation	93

© 2016 IHS

Figure 4.25 Effect of temperature on the major reactions in hydrodealkylation processes	94
Figure 4.26 Effect of Pt and Mo contents in hydrodealkylation catalyst on overall feed conversion	
and BTE selectivity (WO 2008015027)	97
Figure 5.1 Effect of plant capacity on investment costs	118
Figure 5.2 Net production cost of mixed xyleness product as a function of operating level and	
plant capacity	118
Figure 6.1 Effect of plant capacity on investment costs	135
Figure 6.2 Net production cost of deheptanizer bottoms product as a function of operating level	
and plant capacity	135
Figure 7.1 Effect of plant capacity on investment costs	152
Figure 7.2 Net production cost of benzene product as a function of operating level and plant	
capacity	152
Figure 8.1 C ₇ A and C ₉ A to xylene by UOP's Tatoray [™] process (1 of 2)	200
Figure 8.1 C ₇ A and C ₉ A to xylene by UOP's Tatoray [™] process (2 of 2)	201
Figure 8.2 UOP's xylene isomerization process	202
Figure 8.3 Toluene to benzene by CB&I's Detol [®] process (1 of 2)	203
Figure 8.3 Toluene to benzene by CB&I's Detol® process (2 of 2)	204

IHS Customer Care:

Americas: +1 800 IHS CARE (+1 800 447 2273); CustomerCare@ihs.com Europe, Middle East, and Africa: +44 (0) 1344 328 300; Customer.Support@ihs.com Asia and the Pacific Rim: +604 291 3600; SupportAPAC@ihs.com

