IHS CHEMICAL Cellulosic Bioethanol

Process Economics Program Report 263A

November 2017

ihs.com

PEP Report 263A

Cellulosic Bioethanol

Jonny Goyal Principal Analyst

With contributions from Tony Pavone

PEP Report 263A

Cellulosic Bioethanol

Jonny Goyal, Principal Analyst, with contributions from Tony Pavone

Abstract

Cellulosic ethanol is gaining increasing recognition from the global community as one of the great promises and alternatives for the sustainable production of ethanol. Cellulosic ethanol can be used to reduce a nation's dependency on volatile imported fossil fuels and bring about socioeconomic development with reduced negative impact to the environment and reduced contribution to climate change. The critical difference of this technology to the currently established biomass-to-fuel systems (e.g., the corn- and sugar-based ethanol production system), is that cellulosic ethanol can be produced from a wide variety of biomass waste feedstocks, including agricultural plant wastes (e.g., corn stover, cereal straws, and sugarcane bagasse), forest industry wastes, organic wastes from industrial processes (e.g., sawdust and paper pulp), the organic fraction of municipal solid and liquid waste, and a wider range of alternative energy crops (nonfood crops) grown specifically for fuel production, such as switchgrass.

Cellulosic ethanol is a second-generation bioconversion technology used to produce ethanol from lignocellulosic biomass. This report discusses the different factors playing a role in the chemistry of the cellulosic ethanol process—what works best for the process and what does not. All of these parameters are vital and part of this report, the objective of which is to examine some of the commercial cellulosic ethanol plants operating as of 2017, to evaluate their economics, and to offer a financial impact assessment on the economics resulting from variations in different process parameters.

We chose three different commercial cellulosic ethanol plants for evaluation in this report. The cases evaluated in this report are following:

- Case I-POET-DSM's 25 million gallon/year cellulosic ethanol plant in Emmetsburg, Iowa
- Case II—DuPont's 30 million gallon/year cellulosic ethanol plant in Nevada, Iowa
- Case III— Beta Renewables' 20 million gallon/year cellulosic ethanol plant in Crescentino, Italy

Though cellulosic ethanol technology has now entered commercial scale, the recent announcements by DuPont and Beta Renewables to put their plants on sale speak to how critical it is to run a cellulosic ethanol plant economically. This report discuss these aspects in detail, as the economics associated still remains a challenge, and further research and development are needed to continue to reduce plant CAPEX and OPEX, with improvement in ethanol yield. In this report, we have used Aspen Plus[™] and IHS internal tools to work out a process design and its economics for each of the above cases. This report also summarizes possible solutions that could improve bioprocessing, including the development of genetically engineered strains and emerging pretreatment technologies that might be more efficient and economically feasible.

© 2017 IHS

1

Contents

1	Introduction	14
	First-generation biofuels	14
	Debate on first-generation biofuels	15
	Cellulosic ethanol—Second-generation biofuels	16
	Second-generation biofuel feedstocks and technologies	16
	Biochemical value chain and cellulosic ethanol	19
	Feedstock	20
	Sugar crops	20
	Starch crops	20
	Lignocellulosic	20
	Advantages of cellulosic ethanol	21
	One challenge of cellulosic ethanol	22
2	Summary	25
	Industry aspects	25
	Technical aspects	28
	Three cases for comparison	31
	POET-DSM cellulosic ethanol plant in Emmetsburg, Iowa	31
	DuPont's cellulosic ethanol plant in Nevada, Iowa	31
	Beta Renewables' cellulosic ethanol plant in Crescentino, Italy	32
	Economic aspects	34
	Capital cost economics comparison	36
	Product cost economics comparison	36
_	Conclusions	37
3	Industry status	40
	Main drivers for bioethanol	40
	Bioethanol production from lignocellulosic biomass	41
	Flagship (first-of-a-kind commercial) and demonstration cellulosic ethanol facilities	44
	Beta Renewables' commercial-scale plant (Crescentino, Italy)	44
	COMETHA second-generation bioethanol facility (Porto Marghera, Italy)	44
	GranBio commercial-scale plant (Alagoas, Brazil)	45
	Canergy cellulosic advanced biofuel facility (Imperial Valley, California)	46
	Beta Renewables/Biochemtex/Energochemica SE commercial facility (Strazske, Slovak Republic)	46
	Clariant/Enviral advanced biofuel plant (Leopoldov, Slovak Republic)	46
	Beta Renewables/Guozhen Group biorefinery Fuyang (China)	46
	POET-DSM Project LIBERTY (Sioux Falls, South Dakota)	46 47
	Suomen Bioetanoli Oy/POET-DSM commercial plant (Myllykoski, Finland)	47
	Abengoa Bioenergy Biomass commercial plant (Stevens County, Kansas) DuPont (Nevada, Iowa; planned plant in China)	47
	INEOS Bio BioEnergy Center (Indian River County, Florida)	47
	Inbicon (DONG Energy) technology for commercial production of cellulosic ethanol	40
	Clariant Sunliquid [®] large-scale demonstration plant	40 49
	Maabjerg Energy Concept/MEC Biorefinery (Holstebro, Denmark)	49 50
	FUTUROL preindustrial pilot plant (Pomacle-Bazancourt, France)	50
	TMO Renewables (Guildford, England) cellulosic ethanol technology	52
	Chempolis (Oulu, Finland) biorefineries (Indonesia, India)	52
		52

COPYRIGHT NOTCE COPYRIGHT NOTCE AND DISCLAIMER © 2017 IHS. For internal use of IHS clients only. No portion of this report may be reproduced, reused, or otherwise distributed in any form without prior written consent, with the exception of any internal client distribution as may be permitted in the license agreement between client and IHS. Contert reproduced or redistributed with IHS permission must display IHS legal notices and attributions of authorship. The information contained herein is from sources considered reliable, but its accuracy and completeness are not warranted, nor are the opinions and analyses that are based upon it, and to the extent permitted by law, IHS shall not be liable for any errors or omissions or any loss, damage, or expense incurred by reliance on information or any statement contained herein. In particular, please note that no representation or warranty is given as to the achievement or reasonableness of, and no reliance should be placed on, any projections, forecasts, estimates, or assumptions, and, due to various risks and uncertainties, actual events and results may differ materially from forecasts and statements of belief noted herein. This report is not to be construed as legal or financial advice, and use of or reliance on any information in this publication is entirely at client's own risk. IHS and the IHS logo are trademarks of IHS.

IHS™ CHEMICAL

	St1/North Bio Tech Oy cellulosic ethanol plant (Kajaani, Finland)	53
	Petrobras, Novozymes agreement on 2G ethanol from sugarcane bagasse	53
	Enzymes for cellulosic ethanol production	54
	US companies developing cellulosic ethanol plants and related technology	54
	Cellulosic ethanol—Ongoing research and novel pathways	56
	Demand and market drivers	62
	Global ethanol supply and demand	62
	Other chemicals from ethanol	65
	Ethanol price forecast	67
4	Cellulosic ethanol technology review	68
	Chemistry—Understanding plant cells structure and lignocellulosic biomass	68
	Cellulose	70
	Hemicellulose	72
	Xylans	73
	Mannans and glucomannans	73
	Galactans	73
	Lignin	74
	Ash	76
	Chemical interaction between different components of lignocellulosic biomass	77
	Intrapolymer linkages	77
	Interpolymer linkages	78
	Functional groups and chemical properties of lignocellulose components	78 78
	Aromatic ring reactions Hydroxyl group	78
	Ether bond reactions	79
	Ester bond reactions	80
	Hydrogen bond reactions	81
	Inhibiting compounds	81
	Compounds present in lignocellulose structure	81
	Degraded compounds	81
	Nonlignocellulosic inhibitory factors	82
	Conversion technology for cellulosic ethanol production	82
	Pretreatment of lignocellulosic biomass	84
	Reactions in pretreatment	86
	Physical pretreatment	87
	Milling, grinding and chipping	87
	Irradiation	87
	Hydrothermal process/pyrolysis	88
	Physicochemical pretreatment	88
	Steam explosion or steam pretreatment or autohydrolysis	88
	Liquid hot water (LHW) pretreatment	90
	Ammonia fiber explosion (AFEX) pretreatment process	92
	Ammonia recycle percolation (ARP) pretreatment	93
	Supercritical fluid (SCF) pretreatment/or CO ₂ explosion	94 95
	Chemical pretreatment Aqueous acid pretreatment	95
	Alkaline pretreatment	96
	Oxidative delignification	97
	Wet oxidation	97
	Ozonolysis	98
	Organosolv pretreatment	98
	Ionic liquids and cellulose dissolution	100
	Biological pretreatment	104
	Summary of lignocellulosic pretreatment technologies	104
	Hydrolysis of cellulose and hemicellulose	107

© 2017 IHS

3

Enzymatic hydrolysis of cellulose and hemicellulose Enzymatic actions on lignocellulosic biomass	107 108
Enzymatic hydrolysis of cellulose and mechanisms	109
Improving enzymatic hydrolysis	110
Substrate concentration	111
Cellulase dosage	111
Cellulase preparation methods	112
End-product inhibition of cellulase activity	113
Enzymatic hydrolysis of hemicellulose and mechanisms	114
Hemicellulose hydrolysis mechanism	114
Hemicellulases preparation methods	116
Acid hydrolysis of cellulose and hemicellulose	116
Acid hydrolysis mechanism	118
Dilute acid hydrolysis	118
Concentrated acid hydrolysis	119
Fermentation of C_5 and C_6 sugars/process configurations Separate hydrolysis and fermentation (SHF)	119 120
Simultaneous saccharification and fermentation (SSF)	120
Simultaneous saccharification and cofermentation (SSCF)	120
Consolidated bioprocessing (CBP)	121
Microbes for fermentation (bacteria/yeast)	122
Fermenter configuration and design	126
Batch fermentation	127
Fed-batch fermentation	128
Continuous fermentation	128
Immobilized fermentation	129
Inoculator	130
Bioreactor versus chemical reactor	131
Coproduct generation during fermentation process	132
Lignin as coproduct	132
Protein	133
Microbial biomass	134
Distillation of ethanol	134
Effluent treatment and control	136
Future challenges of cellulosic ethanol technology	138
Low yield of lignocellulosic to bioethanol process Root cause analysis	139 140
Process cost	140
Pretreatment cost	142
High enzymes costs	142
Minimizing feedstock delivery cost/uncertain feedstock costs	142
Water requirement	143
Environmental issues	144
Energy associated with biomass processing	144
Living system	144
Availability and reliability	145
Summary and conclusions on technical review of cellulosic ethanol technical	chnology 145
5 Case I—Evaluation of POET-DSM cellulosic ethanol process	148
Introduction	148
POET-DSM plant main insights	149
Greenfield versus brownfield process economics	149
Project LIBERTY process steam generating facilities	150
Overall process schematic	150
Plant site layout	151
POET-DSM cellulosic ethanol technology platform	152
© 2017 IHS 4	November 2017

Downloaded 21 December 2017 07:10 AM UTC by Gomathi N, IHS (Gomathi.N@ihsmarkit.com) - For Use by Licensed Subscribers Only

	Lignocellulose supply, storage, and handling Biomass pretreatment and separation of C5- and C6-sugars	152 153
	Andritz steam explosion technology	155
	Revised pretreatment configuration for POET-DSM	156
	Enzyme production	157
	Anaerobic fermentation and distillation to ethanol	158
	Biogas production and use	159
	Case assumptions	161
	Process description	162
	Section 100—Biomass supply and pretreatment	163
	Section 200—Enzyme hydrolysis and yeast propagation (fermentation)	164
	Section 300—Distillation and dehydration	164
	Section 400—Enzyme and yeast preparation	165
	Process discussion	166
	Cost estimate	176
	Fixed capital costs	176
	Production costs	178
6	Case II—Evaluation of DuPont cellulosic ethanol process	181
	Introduction	181
	DuPont Reform Energy technology platform	182
	DuPont AFEX pretreatment process	184
	Case assumptions	186
	Process description	189
	Section 100—Biomass pretreatment	190
	Section 200—Enzyme hydrolysis and yeast propagation (fermentation)	190
	Section 300—Distillation and dehydration	191
	Section 400—Enzyme and yeast preparation Process discussion	192
	Cost estimate	192 204
	Fixed capital costs	204
	Production costs	204
	Cost discussion DuPont's Nevada, Iowa plant	200
7	Case III—Evaluation of Beta Renewables cellulosic ethanol process	200
÷.,	Introduction	209
	Crescentino cellulosic ethanol project history and plant features	210
	PROESA™ technology review	211
	ENEA biomass pretreatment steam explosion process review	213
	Case assumptions	216
	Process description	219
	Section 100—Biomass handling, pretreatment, and viscosity reduction	219
	Section 200—Yeast propagation and fermentation	221
	Section 300—Distillation and dehydration	222
	Section 400—Enzyme and yeast preparation	223
	Process discussions	224
	Cost estimate	234
	Fixed capital costs	234
	Production costs	236
	pendix A—Patent summaries by assignee	238
	pendix B—Cited references (public domain literature)	252
	pendix C—Cited references (IHS internal references)	269
Ар	pendix D—Process flow diagrams	271

Tables

Table 1.1 Comparison of first-generation versus second-generation biofuels Table 1.2 Estimated amount of lignocellulosic feedstock that could be produced for biofuel in	15
2008 with technologies available in 2008 and by 2020	17
Table 1.3 Summary of feedstock characteristics	21
Table 1.4 Comparison between first-generation and second-generation biochemical,	
thermochemical, and gas fermentation biomass-to-biofuel technologies	22
Table 2.1 United States revised renewable fuels volume requirements for RFS2 (in billion liters)	25
Table 2.3 World fuel ethanol consumption	27
Table 2.4 World fuel ethanol trade	27
Table 2.5 Production steps in biochemical conversion of biomass to cellulosic ethanol	30
Table 2.6 Overall comparison of three cases considered for cellulosic ethanol process evaluation	34
Table 2.7 Overall comparison of capital investment and production cost	35
Table 3.1 EPA-regulated renewable fuel standards	42
Table 3.2 United States—Renewable fuel standards	43 44
Table 3.3 World installed capacity of cellulosic ethanol	44 59
Table 3.4 Status and list of cellulosic ethanol plants in the United States and Canada Table 3.5 List of companies that produce alcohols, fermentable sugars etc. from second-	59
generation biomass	59
Table 3.6 World supply and demand for ethanol ¹	64
Table 3.7 Ethylene glycol, oxide, and derivatives report	66
Table 4.1 Percent composition of lignocellulose components in various lignocellulosic materials	69
Table 4.2 Overview of linkages between the monomer units that form the individual polymers	00
(lignin, cellulose, and hemicellulose) and between the polymers to form lignocellulose	77
Table 4.3 Functional groups in components of lignocellulose	78
Table 4.4 Classification of biomass pretreatment technologies	87
Table 4.5 Xylan recovery, xylan dissolution, SSF conversion, hydrolyzate furfural concentration,	
and hydrolyzate pH as a function of solids concentration for a typical LHW pretreatment	91
Table 4.6 Levels used within the general full factorial model of AFEX pretreatment	92
Table 4.7 Organosolv processes	100
Table 4.8 Abbreviations for discussed ionic liquids	100
Table 4.9 Structures of some ionic liquids and their extent of cellulose solubility	101
Table 4.10 Various physical, chemical and biological methods for the pretreatment of	405
lignocellulosic feedstock	105
Table 4.11 Influence of the main pretreatment processes on lignocellulose structure	107
Table 4.12 Effects of different surfactants on hydrolysis of cellulose newsprint ^a	112
Table 4.12 Some hemicellulases producing microorganisms and references Table 4.13 Selected hydrolysis and fermentation strategies	116 122
Table 4.13 Selected hydrolysis and termentation strategies Table 4.14 Advantages and drawbacks of potential organisms in lignocellulosic-based bioethanol	122
fermentation	125
Table 4.15 Examples of microbial strains that are used for biofuel production	120
Table 4.16 Advantages and disadvantages of fed-batch fermentation	128
Table 4.17 Typical properties of spent wash and composition value	137
Table 4.18 Complexities of starch-based ethanol production to biomass-based ethanol production	101
via fermentation	139
Table 4.19 Major research areas, progress, and challenges in cellulosic ethanol development	145
Table 4.20 Technology readiness level scale	146
Table 5.1 POET-DSM cellulosic ethanol plant (Case I)—Basis of design	162
Table 5.2 POET-DSM cellulosic ethanol plant (Case I)—Material stream flows	167
Table 5.3 POET-DSM cellulosic ethanol plant (Case I)—Major equipment	173
Table 5.4 POET-DSM cellulosic ethanol plant (Case I)—Utility summary	176
Table 5.5 POET-DSM cellulosic ethanol plant (Case I)—Total capital investments	177
Table 5.6 POET-DSM cellulosic ethanol plant (Case I)—Capital investment by section	178
Table 5.7 POET-DSM cellulosic ethanol plant (Case I)—Production cost	179
Table 6.1 DuPont cellulosic ethanol plant (Case II)—Basis of design	188

© 2017 IHS

195
200
204
205
206
207
218
226
231
234
235
236
237

Figures

Figure 1.1 Simplified depiction of process steps for production of second-generation fuel ethanol	16
Figure 1.2 Overview of potential feedstock for production of second-generation biofuels	17
Figure 1.3 Novel approaches to biofuels and chemicals	18
Figure 1.4 Biochemical, thermochemical, and hybrid approaches	19
Figure 1.5 Biochemical value chains	20
Figure 2.1 Basic concept flow to produce cellulosic ethanol	28
Figure 2.2 Cellulosic ethanol biochemical conversion and their significance	29
Figure 2.3 Capital cost comparison	36
Figure 2.4 Production cost comparison (variable, total direct, plant cash, plant gate, and product value)	37
Figure 3.1 Principal drivers for biofuels	40
Figure 3.2 Cellulosic ethanol supply chain	43
Figure 3.3 Beta Renewables cellulosic ethanol flow diagram (PROESA™)	44
Figure 3.4 COMETHA project block flow diagram	45
Figure 3.5 DONG Inbicon technology concept	49
Figure 3.6 Sunliquid [®] process block flow diagram	50
Figure 3.7 MEC biorefinery concept	51
Figure 3.8 FUTUROL integrated four-step process	52
Figure 3.9 Chempolis formicobio [™] technology for cellulosic ethanol production	53
Figure 3.10 World ethanol consumption—2016	63
Figure 3.11 Key chemical derived from ethanol	65
Figure 3.12 Ethanol trading price	67
Figure 4.1 Average composition of lignocellulosic biomass	68
Figure 4.2 Schematic diagram of plant cell walls	69
Figure 4.3 Structure of cellulose	70
Figure 4.4 Illustration of the H-bonding present in cellulose	71
Figure 4.5 View on distribution of crystalline and amorphous cellulose within microfibril	71
Figure 4.6 Simplified structure of hemicellulose	73
Figure 4.7 Main types of lignin group	75
Figure 4.8 Illustration of an intact lignin biopolymer	76
Figure 4.9 Cleavage of ether bond of lignin in alkaline solution	79
Figure 4.10 Hydrolysis of cellulose in acidic media	80
Figure 4.11 Hydrolysis of cellulose in alkaline media	80
Figure 4.12 Inhibitory compounds formed during acid-catalyzed hydrolysis of biomass	82
Figure 4.13 Alternative process configurations for ethanol production using enzymatic hydrolysis,	
and hexose, and pentose fermentation	83
Figure 4.14 Typical products and by-products of cellulosic ethanol technology	84
Figure 4.15 Scheme presenting pretreatment to disrupt the physical structure of biomass	85

November 2017

Downloaded 21 December 2017 07:10 AM UTC by Gomathi N, IHS (Gomathi.N@ihsmarkit.com) - For Use by Licensed Subscribers Only

Figure 4.16 Transformation of crystalline and amorphous forms of cellulose to glucose oligomers,	
glucose, and to degradation products	86
Figure 4.17 Reaction pathways in the hydrothermal processing of lignocellulosic biomass	88
Figure 4.18 Process diagram of steam explosion	89
Figure 4.19 Block flow diagram of LHW pretreatment process	91
Figure 4.20 Reactor configurations for the LHW process	92
Figure 4.21 Simplified process flow diagram of AFEX pretreatment and ammonia recovery system	93
Figure 4.22 Chemistry of organosolv pretreatment process	98
Figure 4.23 Typical organosolv pretreatment process	99
Figure 4.24 Possible chemical modifications that can be conducted to cellulose dissolved in ionic	
liquids	103
Figure 4.25 Pretreatment and hydrolysis pathway	107
Figure 4.26 Three basic routes to produce ethanol via hydrolysis process	108
Figure 4.27 Enzyme actions on cellulose and hemicellulose	108
Figure 4.28 Mechanistic scheme of enzymatic cellulosic hydrolysis by cellulases	110
Figure 4.29 Three approaches to cellulose production	112
Figure 4.30 Basic structural components found in hemicellulose and hemicellulases for their	
degradation	115
Figure 4.31 Possible process routes with dilute acid pretreatment	117
Figure 4.32 Mechanism of acid-catalyzed hydrolysis of β-1-4 glucan	118
Figure 4.33 Two-stage dilute acid hydrolysis	119
Figure 4.34 Separate hydrolysis and fermentation (SHF)	120
Figure 4.35 Simultaneous saccharification and cofermentation (SSCF)	121
Figure 4.36 Consolidated bioprocessing (CBP)	122
Figure 4.37 Simplified xylose—Metabolizing pathways in bacteria and yeast	123
Figure 4.38 Metabolic pathways—C₅ fermentation	124
Figure 4.39 Diversity of fermentation systems for bioethanol production	127
Figure 4.40 Schematic representation of two-chambered immobilized-cell bioreactor	130
Figure 4.41 Steps of inoculation system	130
Figure 4.42 Growth curve of microbes for fermentation process	131
Figure 4.43 Multiple products possibility from upgrading of lignin to fuel and chemicals	133
Figure 4.44 Idealized alcohol distillation system	135
Figure 4.45 Distillation of 95% ethanol with molecular sieves using the PSA process	136
Figure 4.46 Different options to treat distillation bottom stillage	138
Figure 4.47 Cellulosic ethanol—Technical complexity view	139
Figure 4.48 Root cause analysis of lignocellulosic biomass to ethanol conversion process	141
Figure 4.49 Feedstock supply system unit operations and barriers	143
Figure 4.50 Commercialization status of various advanced biofuels-conversion technologies	146
Figure 4.51 Issues impacting the commercialization of bioethanol technologies	147
Figure 5.1 Relationship between POET cellulosic and conventional ethanol plants	148
Figure 5.2 Basic scheme of POET-DSM project for production of cellulosic ethanol	149
Figure 5.3 Block scheme of POET-DSM cellulosic ethanol plant in Iowa	151
Figure 5.4 Physical layout of POET-DSM cellulosic ethanol plant and existing conventional	101
ethanol plant	152
Figure 5.5 Block flow diagram of existing POET-DSM biomass delivery, storage, and handling	153
Figure 5.6 Block flow diagram of existing POET-DSM biomass derivery, storage, and handling	154
Figure 5.7 POET-DSM original approach to steam soak the pulverized lignocellulosic feedstock	154
Figure 5.8 Andritz steam explosion process [US Patent 2011/0079219A1]	155
Figure 5.9 Block flow diagram of Andritz steam explosion process [US Patent 2009/0221814A1]	156
Figure 5.10 Block flow diagram of existing POET-DSM enzyme production	157
Figure 5.11 Block flow diagram of existing POET-DSM enzyme production	158
Figure 5.12 Block flow diagram of existing POET-DSM anaerobic rementation and distination Figure 5.12 Block flow diagram of existing POET-DSM biogas production and use	160
Figure 5.13 POET-DSM Block flow diagram for plant showing stillage centrifuge separation	160
Figure 6.1 DuPont supply chain system	182
Figure 6.2 DuPont biorefinery concept	183
Figure 6.3 Continuous AFEX reactor system	184
Figure 6.4 Possible approaches for ammonia recovery	186
righte 0.4 riossible approaches for antitionia recovery	100

© 2017 IHS

Figure 7.4 Steam explosion batch plant214Figure 7.5 Conceptual design of continuous steam explosion device (ENEA)214Figure 7.5 Conceptual design of continuous steam explosion process215Figure 7.6 Process flow diagram of Crescentino cellulosic ethanol plant217Figure 7.8 Block scheme of Crescentino viscosity reduction/enzymatic hydrolysis section220Figure 7.10 Block scheme of Crescentino filtration system to treat distillation stillage223Figure 7.11 Highlights of medium compositions225Figure 8.1 POET-DSM cellulosic ethanol process (Case I)—Section 100 (biomass pretreatment)272Figure 8.1 POET-DSM cellulosic ethanol process (Case I)—Section 300 (distillation and dehydration)273Figure 8.1 POET-DSM cellulosic ethanol process (Case I)—Section 100 (biomass pretreatment)274Figure 8.1 POET-DSM cellulosic ethanol process (Case I)—Section 300 (distillation and dehydration)274Figure 8.2 DuPont cellulosic ethanol process (Case II)—Section 100 (biomass pretreatment)276Figure 8.2 DuPont cellulosic ethanol process (Case II)—Section 200 (enzyme hydrolysis and yeast propagation) and Section 400 (enzyme and yeast preparation)277Figure 8.2 DuPont cellulosic ethanol process (Case II)—Section 300 (distillation, dehydration, and evaporation)278Figure 8.3 Beta Renewables cellulosic ethanol process (Case III)—Section 100 (biomass pretreatment and viscosity reduction)280Figure 8.3 Beta Renewables cellulosic ethanol process (Case III)—Section 200 (yeast propagation) and Section 400 (enzyme and yeast preparation)281Figure 8.3 Beta Renewables cellulosic ethanol process (Case II	Figure 6.5 DuPont process systematic flow diagram in Nevada, Iowa Figure 7.1 Beta Renewables shareholders Figure 7.2 PROESA™—A technology platform Figure 7.3 PROESA™ cellulosic ethanol technology	186 209 211 212
Figure 7.6 Process flow diagram for ENEA steam explosion process215Figure 7.7 Simplified block flow diagram of Crescentino cellulosic ethanol plant217Figure 7.8 Block scheme of Crescentino viscosity reduction/enzymatic hydrolysis section220Figure 7.10 Block scheme of Crescentino fermentation section221Figure 7.10 Block scheme of Crescentino filtration system to treat distillation stillage223Figure 7.11 Highlights of medium compositions225Figure 8.1 POET-DSM cellulosic ethanol process (Case I)—Section 100 (biomass pretreatment)272Figure 8.1 POET-DSM cellulosic ethanol process (Case I)—Section 300 (distillation and dehydration)273Figure 8.1 POET-DSM cellulosic ethanol process (Case I)—Section 100 (biomass pretreatment)274Figure 8.1 POET-DSM cellulosic ethanol process (Case I)—Section 300 (distillation and dehydration)274Figure 8.2 DuPont cellulosic ethanol process (Case II)—Section 100 (biomass pretreatment)276Figure 8.2 DuPont cellulosic ethanol process (Case II)—Section 200 (enzyme hydrolysis and yeast propagation) and Section 400 (enzyme and yeast preparation)277Figure 8.2 DuPont cellulosic ethanol process (Case II)—Section 300 (distillation, dehydration, and evaporation)278Figure 8.2 DuPont cellulosic ethanol process (Case III)—Section 100 (biomass pretreatment and viscosity reduction)278Figure 8.3 Beta Renewables cellulosic ethanol process (Case III)—Section 100 (biomass pretreatment and viscosity reduction)280Figure 8.3 Beta Renewables cellulosic ethanol process (Case III)—Section 300 (distillation and propagation) and Section 400 (enzyme and yeast preparation)<		
Figure 7.7 Simplified block flow diagram of Crescentino cellulosic ethanol plant217Figure 7.8 Block scheme of Crescentino viscosity reduction/enzymatic hydrolysis section220Figure 7.9 Block scheme of Crescentino fermentation section221Figure 7.10 Block scheme of Crescentino filtration system to treat distillation stillage223Figure 7.11 Highlights of medium compositions225Figure 8.1 POET-DSM cellulosic ethanol process (Case I)—Section 100 (biomass pretreatment)272Section 400 (enzyme and yeast preparation)273Figure 8.1 POET-DSM cellulosic ethanol process (Case I)—Section 300 (distillation and dehydration)274Figure 8.1 POET-DSM cellulosic ethanol process (Case I)—Section 100 (biomass pretreatment)275Figure 8.2 DuPont cellulosic ethanol process (Case II)—Section 100 (biomass pretreatment)276Figure 8.2 DuPont cellulosic ethanol process (Case II)—Section 200 (enzyme hydrolysis and yeast propagation) and Section 400 (enzyme and yeast preparation)277Figure 8.2 DuPont cellulosic ethanol process (Case II)—Section 300 (distillation, dehydration, and evaporation)278Figure 8.3 Beta Renewables cellulosic ethanol process (Case III)—Section 100 (biomass pretreatment and viscosity reduction)280Figure 8.3 Beta Renewables cellulosic ethanol process (Case III)—Section 200 (yeast propagation) and Section 400 (enzyme and yeast preparation)281Figure 8.3 Beta Renewables cellulosic ethanol process (Case III)—Section 200 (yeast propagation) and Section 400 (enzyme and yeast preparation)281Figure 8.3 Beta Renewables cellulosic ethanol process (Case III)—Section 300 (distillation and dehydration) </td <td></td> <td></td>		
Figure 7.8 Block scheme of Crescentino viscosity reduction/enzymatic hydrolysis section220Figure 7.9 Block scheme of Crescentino fermentation section221Figure 7.10 Block scheme of Crescentino filtration system to treat distillation stillage223Figure 7.11 Highlights of medium compositions225Figure 8.1 POET-DSM cellulosic ethanol process (Case I)—Section 100 (biomass pretreatment)272Figure 8.1 POET-DSM cellulosic ethanol process (Case I)—Section 300 (distillation and dehydration)273Figure 8.1 POET-DSM cellulosic ethanol process (Case I)—Media and offsites275Figure 8.2 DuPont cellulosic ethanol process (Case II)—Section 200 (penzyme hydrolysis and yeast propagation) and Section 400 (enzyme and yeast preparation)277Figure 8.2 DuPont cellulosic ethanol process (Case II)—Section 300 (distillation, dehydration, and evaporation) and Section 400 (enzyme and yeast preparation)277Figure 8.2 DuPont cellulosic ethanol process (Case II)—Section 100 (biomass pretreatment)276Figure 8.2 DuPont cellulosic ethanol process (Case II)—Section 300 (distillation, dehydration, and evaporation)278Figure 8.2 DuPont cellulosic ethanol process (Case III)—Section 100 (biomass pretreatment and viscosity reduction)280Figure 8.3 Beta Renewables cellulosic ethanol process (Case III)—Section 200 (yeast propagation) and Section 400 (enzyme and yeast preparation)281Figure 8.3 Beta Renewables cellulosic ethanol process (Case III)—Section 200 (yeast propagation) and Section 400 (enzyme and yeast preparation)281Figure 8.3 Beta Renewables cellulosic ethanol process (Case III)—Section 300 (distillation and dehydration)281 <td></td> <td></td>		
Figure 7.10 Block scheme of Crescentino filtration system to treat distillation stillage223Figure 7.11 Highlights of medium compositions225Figure 8.1 POET-DSM cellulosic ethanol process (Case I)—Section 100 (biomass pretreatment)272Figure 8.1 POET-DSM cellulosic ethanol process (Case I)—Section 200 (yeast propagation) and Section 400 (enzyme and yeast preparation)273Figure 8.1 POET-DSM cellulosic ethanol process (Case I)—Section 300 (distillation and dehydration)274Figure 8.1 POET-DSM cellulosic ethanol process (Case I)—Media and offsites275Figure 8.2 DuPont cellulosic ethanol process (Case II)—Section 100 (biomass pretreatment)276Figure 8.2 DuPont cellulosic ethanol process (Case II)—Section 200 (enzyme hydrolysis and yeast propagation) and Section 400 (enzyme and yeast preparation)277Figure 8.2 DuPont cellulosic ethanol process (Case II)—Section 300 (distillation, dehydration, and evaporation)278Figure 8.2 DuPont cellulosic ethanol process (Case II)—Section 300 (distillation, dehydration, and evaporation)278Figure 8.2 DuPont cellulosic ethanol process (Case II)—Section 100 (biomass pretreatment and viscosity reduction)278Figure 8.3 Beta Renewables cellulosic ethanol process (Case III)—Section 200 (yeast propagation) and Section 400 (enzyme and yeast preparation)280Figure 8.3 Beta Renewables cellulosic ethanol process (Case III)—Section 200 (yeast propagation) and Section 400 (enzyme and yeast preparation)281Figure 8.3 Beta Renewables cellulosic ethanol process (Case III)—Section 300 (distillation and dehydration)281		
Figure 7.11 Highlights of medium compositions225Figure 8.1 POET-DSM cellulosic ethanol process (Case I)—Section 100 (biomass pretreatment)272Figure 8.1 POET-DSM cellulosic ethanol process (Case I)—Section 200 (yeast propagation) and Section 400 (enzyme and yeast preparation)273Figure 8.1 POET-DSM cellulosic ethanol process (Case I)—Section 300 (distillation and dehydration)274Figure 8.1 POET-DSM cellulosic ethanol process (Case I)—Media and offsites275Figure 8.2 DuPont cellulosic ethanol process (Case II)—Section 100 (biomass pretreatment)276Figure 8.2 DuPont cellulosic ethanol process (Case II)—Section 300 (distillation, dehydration, yeast propagation) and Section 400 (enzyme and yeast preparation)277Figure 8.2 DuPont cellulosic ethanol process (Case II)—Section 300 (distillation, dehydration, and evaporation)278Figure 8.2 DuPont cellulosic ethanol process (Case II)—Section 300 (distillation, dehydration, and evaporation)278Figure 8.3 Beta Renewables cellulosic ethanol process (Case III)—Section 100 (biomass pretreatment and viscosity reduction)280Figure 8.3 Beta Renewables cellulosic ethanol process (Case III)—Section 200 (yeast propagation) and Section 400 (enzyme and yeast preparation)281Figure 8.3 Beta Renewables cellulosic ethanol process (Case III)—Section 300 (distillation and dehydration)281Figure 8.3 Beta Renewables cellulosic ethanol process (Case III)—Section 300 (distillation and dehydration)282	Figure 7.9 Block scheme of Crescentino fermentation section	221
Figure 8.1POET-DSM cellulosic ethanol process (Case I)—Section 100 (biomass pretreatment)272Figure 8.1POET-DSM cellulosic ethanol process (Case I)—Section 200 (yeast propagation) and Section 400 (enzyme and yeast preparation)273Figure 8.1POET-DSM cellulosic ethanol process (Case I)—Section 300 (distillation and dehydration)274Figure 8.1POET-DSM cellulosic ethanol process (Case I)—Media and offsites275Figure 8.2DuPont cellulosic ethanol process (Case II)—Section 100 (biomass pretreatment)276Figure 8.2DuPont cellulosic ethanol process (Case II)—Section 200 (enzyme hydrolysis and yeast propagation) and Section 400 (enzyme and yeast preparation)277Figure 8.2DuPont cellulosic ethanol process (Case II)—Section 300 (distillation, dehydration, and evaporation)278Figure 8.2DuPont cellulosic ethanol process (Case II)—Media and offsites279Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 100 (biomass pretreatment and viscosity reduction)280Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 200 (yeast propagation) and Section 400 (enzyme and yeast preparation)281Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 300 (distillation and dehydration)281		
Figure 8.1POET-DSM cellulosic ethanol process (Case I)—Section 200 (yeast propagation) and Section 400 (enzyme and yeast preparation)273Figure 8.1POET-DSM cellulosic ethanol process (Case I)—Section 300 (distillation and dehydration)274Figure 8.1POET-DSM cellulosic ethanol process (Case I)—Media and offsites275Figure 8.2DuPont cellulosic ethanol process (Case II)—Section 100 (biomass pretreatment)276Figure 8.2DuPont cellulosic ethanol process (Case II)—Section 200 (enzyme hydrolysis and yeast propagation) and Section 400 (enzyme and yeast preparation)277Figure 8.2DuPont cellulosic ethanol process (Case II)—Section 300 (distillation, dehydration, and evaporation)278Figure 8.2DuPont cellulosic ethanol process (Case II)—Media and offsites279Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 100 (biomass pretreatment and viscosity reduction)280Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 200 (yeast propagation) and Section 400 (enzyme and yeast preparation)281Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 300 (distillation and dehydration)282		
Figure 8.1POET-DSM cellulosic ethanol process (Case I)—Section 300 (distillation and dehydration)274Figure 8.1POET-DSM cellulosic ethanol process (Case I)—Media and offsites275Figure 8.2DuPont cellulosic ethanol process (Case II)—Section 100 (biomass pretreatment)276Figure 8.2DuPont cellulosic ethanol process (Case II)—Section 200 (enzyme hydrolysis and yeast propagation) and Section 400 (enzyme and yeast preparation)277Figure 8.2DuPont cellulosic ethanol process (Case II)—Section 300 (distillation, dehydration, and evaporation)278Figure 8.2DuPont cellulosic ethanol process (Case II)—Media and offsites279Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 100 (biomass pretreatment and viscosity reduction)280Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 300 (distillation and dehydration)281Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 300 (distillation and dehydration)281		272
dehydration)274Figure 8.1POET-DSM cellulosic ethanol process (Case I)—Media and offsites275Figure 8.2DuPont cellulosic ethanol process (Case II)—Section 100 (biomass pretreatment)276Figure 8.2DuPont cellulosic ethanol process (Case II)—Section 200 (enzyme hydrolysis and yeast propagation) and Section 400 (enzyme and yeast preparation)277Figure 8.2DuPont cellulosic ethanol process (Case II)—Section 300 (distillation, dehydration, and evaporation)278Figure 8.2DuPont cellulosic ethanol process (Case II)—Media and offsites279Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 100 (biomass pretreatment and viscosity reduction)280Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 200 (yeast propagation) and Section 400 (enzyme and yeast preparation)281Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 300 (distillation and dehydration)282		273
Figure 8.1POET-DSM cellulosic ethanol process (Case I)—Media and offsites275Figure 8.2DuPont cellulosic ethanol process (Case II)—Section 100 (biomass pretreatment)276Figure 8.2DuPont cellulosic ethanol process (Case II)—Section 200 (enzyme hydrolysis and yeast propagation) and Section 400 (enzyme and yeast preparation)277Figure 8.2DuPont cellulosic ethanol process (Case II)—Section 300 (distillation, dehydration, and evaporation)278Figure 8.2DuPont cellulosic ethanol process (Case II)—Media and offsites279Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 100 (biomass pretreatment and viscosity reduction)280Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 200 (yeast propagation) and Section 400 (enzyme and yeast preparation)281Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 300 (distillation and dehydration)281		
Figure 8.2DuPont cellulosic ethanol process (Case II)—Section 100 (biomass pretreatment)276Figure 8.2DuPont cellulosic ethanol process (Case II)—Section 200 (enzyme hydrolysis and yeast propagation) and Section 400 (enzyme and yeast preparation)277Figure 8.2DuPont cellulosic ethanol process (Case II)—Section 300 (distillation, dehydration, and evaporation)278Figure 8.2DuPont cellulosic ethanol process (Case II)—Media and offsites279Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 100 (biomass pretreatment and viscosity reduction)280Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 200 (yeast propagation) and Section 400 (enzyme and yeast preparation)281Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 300 (distillation and dehydration)281		
Figure 8.2DuPont cellulosic ethanol process (Case II)—Section 200 (enzyme hydrolysis and yeast propagation) and Section 400 (enzyme and yeast preparation)277Figure 8.2DuPont cellulosic ethanol process (Case II)—Section 300 (distillation, dehydration, and evaporation)278Figure 8.2DuPont cellulosic ethanol process (Case II)—Media and offsites279Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 100 (biomass pretreatment and viscosity reduction)280Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 200 (yeast propagation) and Section 400 (enzyme and yeast preparation)281Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 300 (distillation and dehydration)282		
yeast propagation) and Section 400 (enzyme and yeast preparation)277Figure 8.2DuPont cellulosic ethanol process (Case II)—Section 300 (distillation, dehydration, and evaporation)278Figure 8.2DuPont cellulosic ethanol process (Case II)—Media and offsites279Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 100 (biomass pretreatment and viscosity reduction)280Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 200 (yeast propagation) and Section 400 (enzyme and yeast preparation)281Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 300 (distillation and dehydration)281		276
Figure 8.2DuPont cellulosic ethanol process (Case II)—Section 300 (distillation, dehydration, and evaporation)278Figure 8.2DuPont cellulosic ethanol process (Case II)—Media and offsites279Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 100 (biomass pretreatment and viscosity reduction)280Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 200 (yeast propagation) and Section 400 (enzyme and yeast preparation)281Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 300 (distillation and dehydration)282		277
Figure 8.2DuPont cellulosic ethanol process (Case II)—Media and offsites279Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 100 (biomass pretreatment and viscosity reduction)280Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 200 (yeast propagation) and Section 400 (enzyme and yeast preparation)281Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 300 (distillation and dehydration)282		
Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 100 (biomass pretreatment and viscosity reduction)280Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 200 (yeast propagation) and Section 400 (enzyme and yeast preparation)281Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 300 (distillation and dehydration)282	and evaporation)	278
pretreatment and viscosity reduction)280Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 200 (yeast propagation) and Section 400 (enzyme and yeast preparation)281Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 300 (distillation and dehydration)282		279
Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 200 (yeast propagation) and Section 400 (enzyme and yeast preparation)281Figure 8.3Beta Renewables cellulosic ethanol process (Case III)—Section 300 (distillation and dehydration)282		
propagation) and Section 400 (enzyme and yeast preparation)281Figure 8.3 Beta Renewables cellulosic ethanol process (Case III)—Section 300 (distillation and dehydration)282		280
Figure 8.3 Beta Renewables cellulosic ethanol process (Case III)—Section 300 (distillation and dehydration) 282		201
dehydration) 282		201
		282
	Figure 8.3 Beta Renewables cellulosic ethanol process (Case III)—Media and offsites	283

IHS Customer Care:

Americas: +1 800 IHS CARE (+1 800 447 2273); CustomerCare@ihs.com Europe, Middle East, and Africa: +44 (0) 1344 328 300; Customer.Support@ihs.com Asia and the Pacific Rim: +604 291 3600; SupportAPAC@ihs.com

