IHS CHEMICAL

Propane Dehydrogenation (II)

Process Economics Program Report 267B

February 2018 ihs.com

PEP Report 267B

Propane Dehydrogenation (II)

Mike Kelly Director

PEP Report 267B

Propane Dehydrogenation (II)

Mike Kelly, Director

Abstract

Propylene is one of the most important raw materials for the production of other organic chemicals. It was produced almost exclusively as a by-product in ethylene plants (steam crackers) and refinery operations (primarily fluid catalytic cracking) until about ten years ago. The supply landscape has changed dramatically over the last decade as propylene output from these traditional sources has slowed, due largely to developments in shale gas and the associated impact on relative feedstock pricing. The resulting imbalance in propylene supply/demand has led to an increasing reliance on other, on-purpose technologies for manufacturing propylene.

Propane dehydrogenation (PDH) is one on-purpose technology that has gained much traction in the marketplace. Dozens of new PDH installations have been announced worldwide, and many are already under construction. The single feed/single product feature is one of the most attractive aspects of propane dehydrogenation, but despite the simple chemistry, industrial implementation is complicated by equilibrium constraints, side reactions, and coke formation.

PEP previously evaluated the three leading commercial PDH technologies, but the focus of this report is on alternative/emerging technologies that have not yet been commercialized for propane dehydrogenation. A general review of the technical field is provided along with detailed economic evaluations for the following processes:

- Dow Fluidized Catalytic Dehydrogenation (FCDh)
- Linde/BASF PDH
- Snamprogetti/ Yarsintez Fluidized Bed Dehydrogenation (FBD-3)

The analysis and technoeconomic results that follow are based on a design capacity of 550,000 metric tons (1.2 billion pounds) per year of polymer-grade propylene. Alternative investment and production cost estimates are also provided for plant capacities that are half and double the base case. While the capital and production cost results herein are presented on a US Gulf Coast basis, the accompanying iPEP Navigator Excel-based data module (available with the electronic version of this report) allows for viewing results for other major regions along with conversion between English and metric units.

Contents

1	Introduction	8
2	Summary	
	Industry aspects	Ş
	Technical aspects	9
	Dow FCDh	11
	Linde/BASF PDH	11
	Snamprogetti/Yarsintez FBD-3	12
	Economic aspects	12
3	Industry status	14
	Propane	14
	Supply	14
	Demand	16
	Trade	18
	Propylene	19
	Supply	19
	Demand	20
	Trade	21
	Strategic issues	22
	PDH investment	29
4	Technology review	32
	Chemistry	32
	Thermodynamics	34
	Catalysts	35
	Licensors	36
	UOP Oleflex™	36
	CB&I/Lummus CATOFIN®	38
	ThyssenKrupp/Uhde STAR®	40
	Dow FCDh	41
	Catalyst	42
	Reactor-regenerator	43
	Process flow	51
	Integration	52
	Environmental	52
	Linde/BASF PDH	52
	Catalyst	52
	Reaction	55
	Regeneration	56
	Process flow	57
	Snamprogetti/Yarsintez FBD-3	58
	Catalyst	59
	Reactor-regenerator	60
	Process flow	64
	Emissions	65

IHS™ CHEMICAL

COPYRIGHT NOTICE AND DISCLAIMER © 2017 IHS. For internal use of IHS clients only.

No portion of this report may be reproduced, reused, or otherwise distributed in any form without prior written consent, with the exception of any internal client distribution as may be permitted in the license agreement between client and IHS. Content reproduced or redistributed with IHS permission must display IHS legal notices and attributions of authorship. The information contained herein is from sources considered reliable, but its accuracy and completeness are not warranted, nor are the opinions and analyses that are based upon it, and to the extent permitted by law, IHS shall not be liable for any errors or ormissions or any loss, damage, or expense incurred by reliance on information or any statement contained herein. In particular, please note that no representation or warranty is given as to the achievement or reasonableness of, and no reliance should be placed on, any projections, forecasts, estimates, or assumptions, and, due to various risks and uncertainties, actual events and results may differ materially from forecasts and statements of belief noted herein. This reprot is not to be construed as legal or financial advice, and use of or reliance on any information in this publication is entirely at client's own risk. IHS and the IHS logo are trademarks of IHS.

5 Economic evaluation–Dow FCDh	67
Process description	67
Section 100—Reaction and regeneration	67
Section 200—Product recovery	68
Process discussion	73
Feedstocks, products, and storage	73
Reactor and regenerator	74
Compression	74
Propylene recovery	74
Cold box	75
Materials of construction	75
Refrigeration	75
Cost estimates	75
Capital costs	75 75
Production costs	76 76
6 Economic evaluation–Linde/BASF PDH	
	82
Process description	82
Section 100—Reaction	82
Section 200—Product recovery	83
Process discussion	89
Feedstocks, products, and storage	89
Reactors	90
Compression	90
Propylene recovery	90
Cold box	90
Materials of construction	91
Refrigeration	91
Cost estimates	91
Capital costs	91
Production costs	92
7 Economic evaluation—Snamprogetti/Yarsintez FBD-3	98
Process description	98
Section 100—Reaction and regeneration	98
Section 200—Product recovery	99
Process discussion	104
Feedstocks, products, and storage	104
Reactor and regenerator	105
Compression	105
Propylene recovery	105
Cold box	105
Materials of construction	106
Refrigeration	106
Cost estimates	106
Capital costs	106
Production costs	107
Appendix A—Patent summaries	113
Appendix B—Design and cost basis	132
Appendix C—Cited references	137
Appendix D—Patent references by company	143
Appendix E—Process flow diagrams	146

Tables

Table 2.1 Comparison of propane dehydrogenation process conditions and features	11
Table 4.1 OSHA permissible exposure limits for chromium	65
Table 4.2 Typical emissions in FBD-3 process	66
Table 5.1 Propylene from propane by Dow FCDh—Design bases	69
Table 5.2 Propylene from propane by Dow FCDh—Stream flows	70
Table 5.3 Propylene from propane by Dow FCDh—Major equipment	71
Table 5.4 Propylene from propane by Dow FCDh—Utilities Summary	73
Table 5.5 Propylene from propane by Dow FCDh—Capital investment	78
Table 5.6 Propylene from propane by Dow FCDh—Capital investment by section	79
Table 5.7 Propylene from propane by Dow FCDh—Variable costs	80
Table 5.8 Propylene from propane by Dow FCDh—Production costs	81
Table 6.1 Propylene from propane by Linde/BASF PDH—Design bases	84
Table 6.2 Propylene from propane by Linde/BASF PDH—Stream flows	85
Table 6.3 Propylene from propane by Linde/BASF PDH—Major equipment	87
Table 6.4 Propylene from propane by Linde/BASF PDH—Utilities summary	89
Table 6.5 Propylene from propane by Linde/BASF PDH—Capital investment	94
Table 6.6 Propylene from propane by Linde/BASF PDH—Capital investment by section	95
Table 6.7 Propylene from propane by Linde/BASF PDH—Variable costs	96
Table 6.8 Propylene from propane by Linde/BASF PDH—Production costs	97
Table 7.1 Propylene from propane by Snamprogetti/Yarsintez FBD-3—Design bases	100
Table 7.2 Propylene from propane by Snamprogetti/Yarsintez FBD-3—Stream flows	101
Table 7.3 Propylene from propane by Snamprogetti/Yarsintez FBD-3—Major equipment	102
Table 7.4 Propylene from propane by Snamprogetti/Yarsintez FBD-3—Utilities summary	104
Table 7.5 Propylene from propane by Snamprogetti/Yarsintez FBD-3—Capital investment	109
Table 7.6 Propylene from propane by Snamprogetti/Yarsintez FBD-3—Capital investment by	
section	110
Table 7.7 Propylene from propane by Snamprogetti/Yarsintez FBD-3—Variable costs	111
Table 7.8 Propylene from propane by Snamprogetti/Yarsintez FBD-3—Production costs	112
Figures	

Figure 2.1 Comparison of propane dehydrogenation total fixed capital for Q2-17	13
Figure 2.2 Comparison of propane dehydrogenation production costs for Q2-17	13
Figure 3.1 World propane production by source	15
Figure 3.2 World propane production by region	16
Figure 3.3 World propane demand by sector	17
Figure 3.4 World propane demand by region	18
Figure 3.5 World total propane exports by major source	19
Figure 3.6 World PG/CG propylene production by technology	20
Figure 3.7 World PG/CG propylene demand by end use	21
Figure 3.8 World propylene net equivalent trade	22
Figure 3.9 Global propylene capacity additions versus demand	24
Figure 3.10 Global propylene capacity additions 2016–26	25
Figure 3.11 Global PDH capacity additions	30
Figure 3.12 Licensor market share in 2017	31
Figure 4.1 Reaction network of propane dehydrogenation	33
Figure 4.2 Equilibrium conversion of light alkanes at atmospheric pressure	34
Figure 4.3 Equilibrium conversion of propane at different pressures	35
Figure 4.4 UOP Oleflex™ simplified process flow diagram	37
Figure 4.5 CB&I CATOFIN® simplified process flow diagram	39
Figure 4.6 ThyssenKrupp/Uhde STAR® process flow diagram	40

Figure 4.7 Dow FCDh reactor/regenerator	44
Figure 4.8 Dow reactor feed distribution assembly	45
Figure 4.9 Dow reactor cyclone and plenum design	46
Figure 4.10 Dow low-velocity gas-solid separation devices	47
Figure 4.11 Dow grid-like internals	48
Figure 4.12 Dow reactor quench	49
Figure 4.13 Dow riser reactor support	50
Figure 4.14 Dow FCDh simplified process flow	51
Figure 4.15 Linde/BASF PDH reactor	55
Figure 4.16 Linde/BASF PDH simplified process flow	58
Figure 4.17 Snamprogetti/Yarsintez FBD-3 reactor-regenerator system	61
Figure 4.18 Snamprogetti/Yarsintez baffle designs	62
Figure 4.19 Snamprogetti/Yarsintez reactor fitted with baffles	63
Figure 4.20 Snamprogetti/Yarsintez simplified process flow	65
Figure 5.1 Propylene from propane by Dow FCDh—Capital investment	76
Figure 5.2 Propylene from propane by Dow FCDh—Net production costs	77
Figure 5.3 Propylene from propane by Dow FCDh—Product value	77
Figure 6.1 Propylene from propane by Linde/BASF PDH—Capital investment	92
Figure 6.2 Propylene from propane by Linde/BASF PDH—Net production costs	93
Figure 6.3 Propylene from propane by Linde/BASF PDH—Product value	93
Figure 7.1 Propylene from propane by Snamprogetti/Yarsintez FBD-3—Capital investment	107
Figure 7.2 Propylene from propane by Snamprogetti/Yarsintez FBD-3—Net production costs	108
Figure 7.3 Propylene from propane by Snamprogetti/Yarsintez FBD-3—Product value	108
Figure 5.4 Propylene from propane by Dow FCDh—Process flow diagram	147
Figure 6.4 Propylene from propane by Linde/BASF PDH—Process flow diagram	149
Figure 7.4 Propylene from propage by Snamprogetti/Yarsintez FBD-3—Process flow diagram	150

IHS Customer Care:

Americas: +1 800 IHS CARE (+1 800 447 2273); CustomerCare@ihs.com Europe, Middle East, and Africa: +44 (0) 1344 328 300; Customer.Support@ihs.com Asia and the Pacific Rim: +604 291 3600; SupportAPAC@ihs.com

