Abstract

Propylene is one of the most important raw materials for the production of other organic chemicals. It was produced almost exclusively as a by-product in ethylene plants (steam crackers) and refinery operations (primarily fluid catalytic cracking) until about ten years ago. The supply landscape has changed dramatically over the last decade as propylene output from these traditional sources has slowed, due largely to developments in shale gas and the associated impact on relative feedstock pricing. The resulting imbalance in propylene supply/demand has led to an increasing reliance on other, on-purpose technologies for manufacturing propylene.

Propane dehydrogenation (PDH) is one on-purpose technology that has gained much traction in the marketplace. Dozens of new PDH installations have been announced worldwide, and many are already under construction. The single feed/single product feature is one of the most attractive aspects of propane dehydrogenation, but despite the simple chemistry, industrial implementation is complicated by equilibrium constraints, side reactions, and coke formation.

PEP previously evaluated the three leading commercial PDH technologies, but the focus of this report is on alternative/emerging technologies that have not yet been commercialized for propane dehydrogenation. A general review of the technical field is provided along with detailed economic evaluations for the following processes:

- Dow Fluidized Catalytic Dehydrogenation (FCDh)
- Linde/BASF PDH
- Snamprogetti/ Yarsintez Fluidized Bed Dehydrogenation (FBD-3)

The analysis and technoeconomic results that follow are based on a design capacity of 550,000 metric tons (1.2 billion pounds) per year of polymer-grade propylene. Alternative investment and production cost estimates are also provided for plant capacities that are half and double the base case. While the capital and production cost results herein are presented on a US Gulf Coast basis, the accompanying iPEP Navigator Excel-based data module (available with the electronic version of this report) allows for viewing results for other major regions along with conversion between English and metric units.
Contents

1 Introduction 8
2 Summary 9
 Industry aspects 9
 Technical aspects 9
 Dow FCDh 11
 Linde/BASF PDH 11
 Snamprogetti/Yarsintez FBD-3 12
 Economic aspects 12
3 Industry status 14
 Propane 14
 Supply 14
 Demand 16
 Trade 18
 Propylene 19
 Supply 19
 Demand 20
 Trade 21
 Strategic issues 22
 PDH investment 29
4 Technology review 32
 Chemistry 32
 Thermodynamics 34
 Catalysts 35
 licensors 36
 UOP Oleflex™ 36
 CB&I/Lummus CATOFIN® 38
 ThyssenKrupp/Uhde STAR® 40
 Dow FCDh 41
 Catalyst 42
 Reactor-regenerator 43
 Process flow 51
 Integration 52
 Environmental 52
 Linde/BASF PDH 52
 Catalyst 52
 Reaction 55
 Regeneration 56
 Process flow 57
 Snamprogetti/Yarsintez FBD-3 58
 Catalyst 59
 Reactor-regenerator 60
 Process flow 64
 Emissions 65
5 Economic evaluation–Dow FCDh 67
 Process description 67
 Section 100—Reaction and regeneration 67
 Section 200—Product recovery 68
 Process discussion 73
 Feedstocks, products, and storage 73
 Reactor and regenerator 74
 Compression 74
 Propylene recovery 74
 Cold box 75
 Materials of construction 75
 Refrigeration 75
 Cost estimates 75
 Capital costs 75
 Production costs 76

6 Economic evaluation–Linde/BASF PDH 82
 Process description 82
 Section 100—Reaction 82
 Section 200—Product recovery 83
 Process discussion 89
 Feedstocks, products, and storage 89
 Reactors 90
 Compression 90
 Propylene recovery 90
 Cold box 90
 Materials of construction 91
 Refrigeration 91
 Cost estimates 91
 Capital costs 91
 Production costs 92

7 Economic evaluation–Snamprogetti/Yarsintez FBD-3 98
 Process description 98
 Section 100—Reaction and regeneration 98
 Section 200—Product recovery 99
 Process discussion 104
 Feedstocks, products, and storage 104
 Reactor and regenerator 105
 Compression 105
 Propylene recovery 105
 Cold box 105
 Materials of construction 106
 Refrigeration 106
 Cost estimates 106
 Capital costs 106
 Production costs 107

Appendix A—Patent summaries 113
Appendix B—Design and cost basis 132
Appendix C—Cited references 137
Appendix D—Patent references by company 143
Appendix E—Process flow diagrams 146
Tables

Table 2.1 Comparison of propane dehydrogenation process conditions and features 11
Table 4.1 OSHA permissible exposure limits for chromium 65
Table 4.2 Typical emissions in FBD-3 process 66
Table 5.1 Propylene from propane by Dow FCDh—Design bases 69
Table 5.2 Propylene from propane by Dow FCDh—Stream flows 70
Table 5.3 Propylene from propane by Dow FCDh—Major equipment 71
Table 5.4 Propylene from propane by Dow FCDh—Utilities Summary 73
Table 5.5 Propylene from propane by Dow FCDh—Capital investment 78
Table 5.6 Propylene from propane by Dow FCDh—Capital investment by section 79
Table 5.7 Propylene from propane by Dow FCDh—Variable costs 80
Table 5.8 Propylene from propane by Dow FCDh—Production costs 81
Table 6.1 Propylene from propane by Linde/BASF PDH—Design bases 84
Table 6.2 Propylene from propane by Linde/BASF PDH—Stream flows 85
Table 6.3 Propylene from propane by Linde/BASF PDH—Major equipment 87
Table 6.4 Propylene from propane by Linde/BASF PDH—Utilities summary 89
Table 6.5 Propylene from propane by Linde/BASF PDH—Capital investment 94
Table 6.6 Propylene from propane by Linde/BASF PDH—Capital investment by section 95
Table 6.7 Propylene from propane by Linde/BASF PDH—Variable costs 96
Table 6.8 Propylene from propane by Linde/BASF PDH—Production costs 97
Table 7.1 Propylene from propane by Snamprogetti/Yarsintez FBD-3—Design bases 100
Table 7.2 Propylene from propane by Snamprogetti/Yarsintez FBD-3—Stream flows 101
Table 7.3 Propylene from propane by Snamprogetti/Yarsintez FBD-3—Major equipment 102
Table 7.4 Propylene from propane by Snamprogetti/Yarsintez FBD-3—Utilities summary 104
Table 7.5 Propylene from propane by Snamprogetti/Yarsintez FBD-3—Capital investment 109
Table 7.6 Propylene from propane by Snamprogetti/Yarsintez FBD-3—Capital investment by section 110
Table 7.7 Propylene from propane by Snamprogetti/Yarsintez FBD-3—Variable costs 111
Table 7.8 Propylene from propane by Snamprogetti/Yarsintez FBD-3—Production costs 112

Figures

Figure 2.1 Comparison of propane dehydrogenation total fixed capital for Q2-17 13
Figure 2.2 Comparison of propane dehydrogenation production costs for Q2-17 13
Figure 3.1 World propane production by source 15
Figure 3.2 World propane production by region 16
Figure 3.3 World propane demand by sector 17
Figure 3.4 World propane demand by region 18
Figure 3.5 World total propane exports by major source 19
Figure 3.6 World PG/CG propylene production by technology 20
Figure 3.7 World PG/CG propylene demand by end use 21
Figure 3.8 World propylene net equivalent trade 22
Figure 3.9 Global propylene capacity additions versus demand 24
Figure 3.10 Global propylene capacity additions 2016–26 25
Figure 3.11 Global PDH capacity additions 30
Figure 3.12 Licensor market share in 2017 31
Figure 4.1 Reaction network of propane dehydrogenation 33
Figure 4.2 Equilibrium conversion of light alkanes at atmospheric pressure 34
Figure 4.3 Equilibrium conversion of propane at different pressures 35
Figure 4.4 UOP Oleflex™ simplified process flow diagram 37
Figure 4.5 CB&I CATOFIN® simplified process flow diagram 39
Figure 4.6 ThyssenKrupp/Uhde STAR® process flow diagram 40
Figure 4.7 Dow FCDh reactor/regenerator
Figure 4.8 Dow reactor feed distribution assembly
Figure 4.9 Dow reactor cyclone and plenum design
Figure 4.10 Dow low-velocity gas-solid separation devices
Figure 4.11 Dow grid-like internals
Figure 4.12 Dow reactor quench
Figure 4.13 Dow riser reactor support
Figure 4.14 Dow FCDh simplified process flow
Figure 4.15 Linde/BASF PDH reactor
Figure 4.16 Linde/BASF PDH simplified process flow
Figure 4.17 Snamprogetti/Yarsintez FBD-3 reactor-regenerator system
Figure 4.18 Snamprogetti/Yarsintez baffle designs
Figure 4.19 Snamprogetti/Yarsintez reactor fitted with baffles
Figure 4.20 Snamprogetti/Yarsintez simplified process flow
Figure 5.1 Propylene from propane by Dow FCDh—Capital investment
Figure 5.2 Propylene from propane by Dow FCDh—Net production costs
Figure 5.3 Propylene from propane by Dow FCDh—Product value
Figure 6.1 Propylene from propane by Linde/BASF PDH—Capital investment
Figure 6.2 Propylene from propane by Linde/BASF PDH—Net production costs
Figure 6.3 Propylene from propane by Linde/BASF PDH—Product value
Figure 7.1 Propylene from propane by Snamprogetti/Yarsintez FBD-3—Capital investment
Figure 7.2 Propylene from propane by Snamprogetti/Yarsintez FBD-3—Net production costs
Figure 7.3 Propylene from propane by Snamprogetti/Yarsintez FBD-3—Product value
Figure 5.4 Propylene from propane by Dow FCDh—Process flow diagram
Figure 6.4 Propylene from propane by Linde/BASF PDH—Process flow diagram
Figure 7.4 Propylene from propane by Snamprogetti/Yarsintez FBD-3—Process flow diagram