Abstract

In June 2014, Avantium Technologies BV (The Netherlands) announced plans for the first industrial-scale plant for producing bio-based PEF polymer (polyethylene 2,5-furandicarboxylate), with financial support from an industrial consortium of Swire Pacific, The Coca-Cola Company, Danone, and ALPLA. PEF is a novel, 100% bio-based polyester resin with claimed better barrier, thermal, and mechanical properties than existing packaging materials, such as PET (polyethylene terephthalate). PEF is intended to replace PET in blow-molded cold beverage bottles. Furthermore, PEF can be used in fibers, films, and other polyester applications. The primary monomer in PEF is 2,5-furandicarboxylic acid (FDCA), which can be produced from 5-hydroxymethyl furfural (HMF) derived from C6 sugar via chemical catalytic dehydration of sugar to 5-HMF, followed by selective oxidation of 5-HMF to FDCA. 5-HMF can also be produced via thermal pyrolysis. PEF is produced by copolymerizing FDCA dimethyl diester with ethylene glycol via transesterification and polycondensation. Its molecular weight is then increased to approximately 30,000 (required for bottle-grade PET) via solid state (melt phase) thermal polymerization. A parallel effort to produce FDCA from 5-HMF via enzyme fermentation, and polymerize it to PEF, is being developed by Corbion Purac.

The primary uses for conventional PET polymer are to produce bottle-grade resins for cold beverage containers (carbonated beverages and bottled water), and as polyester fiber, which, when blended with cotton fiber, produces a wide variety of textile fabrics useful in clothing. Bottle-grade PET resin is also used in industrial fibers. The plastic bottle beverage industry has been under intense pressure from environmentalists over the solid waste generated from discarded conventional PET-based bottles. It is believed that migration from hydrocarbon-based PET to a 100% bio-based plastic PEF bottle resin will relieve some of the environmental pressure; it could also result in lower-cost resins, given the long-term anticipated price increase in crude oil, which is the fundamental feedstock for producing PET from conventional feedstock PTA (purified terephthalic acid) and monoethylene glycol.

In this report, we develop the Class-3 process design and corresponding estimated production economics for producing industrial quantities of FDCA from C6 sugar via catalytic dehydration and selective oxidation, and also the process design and corresponding production economics for producing industrial quantities of PEF resin from the combination of bio-based ethylene glycol and bio-based FDCA. Both efforts rely on our understanding of relevant process technology developed by Avantium Technologies BV.

Also included in this report is a review of Eastman Chemical Company’s technology for the conversion of HMF and its derivatives to polymer-grade FDCA or polymer-grade DMF, based on our understanding of Eastman’s US patents and patent applications. We also discuss similar process technology development efforts in the HMF/FDCA/DMF/PEF integrated product chain being pursued by DuPont, Corbion Purac, and AVA Biochem.
Contents

<table>
<thead>
<tr>
<th>1 Introduction</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>17</td>
</tr>
<tr>
<td>Potential uses for FDCA and PEF</td>
<td>18</td>
</tr>
<tr>
<td>Avantium 2,5-furan dicarboxylic acid</td>
<td>19</td>
</tr>
<tr>
<td>Other 2,5-furan dicarboxylic acid developers</td>
<td>19</td>
</tr>
<tr>
<td>Avantium developments in FDCA, DMF, DEF, and PEF</td>
<td>19</td>
</tr>
<tr>
<td>Agricultural waste feedstock sources for FDCA production</td>
<td>20</td>
</tr>
</tbody>
</table>

2 Summary	22
Biopolymers overview	24
PlantBottle® by The Coca-Cola Company	26
Commercialization of 5-HMF production by AVA Biochem	26
Other FDCA/PEF process developers	26
PET bottle-grade resin target market for PEF	27
PET market size	27
PET bottle-grade resin market pricing	28
Avantium process overview	28
Fructose dehydration to HMF	29
HMF oxidation to FDCA	29
FDCA polymerization to PEF	30
Other means to synthesize HMF from C₆ sugar	31
PEF physical properties	31
PEF performance properties	32
Project design basis	33
Scope of work	33
Specification deliverables	33
Feedstock, product, and energy pricing	34
Product specifications	35
FDCA monomer manufacturing specification	35
PEF bottle-grade resin manufacturing specification	35
2,5-Furan dicarboxylic acid (FDCA) monomer and DMF from C₆ sugar via Avantium technology	36
Comparison of PTA and FDCA processing	36
DMF input-output diagram	37
Material balance	38
Capital cost estimate	39
Production cost estimate	39
Polyethylene furanoate (PEF) polymer from dimethyl furanoate (DMF) monomer	40
Comparison of PEF processing with conventional PET processing	40
Input-output diagram	40
Segmentation of process	41
Total fixed capital cost estimate	42
Integrated PEF process	43
Capital cost estimate	43
Production cost estimate	44
Comparative production economics	45
Comparative production economics for DMF versus DMT	45
3 Industry status

Comparative production economics for PEF versus PET 46
Comparative integrated production economics for PEF versus PET 47

3 Industry status

Biopolymers overview 49
Potential uses for FDCA and PEF 52
Background of Avantium 52
Avantium pilot plant 53
US DOE biomass development program 54
Other alternatives to conventional, hydrocarbon-based PET 55
PlantBottle® by The Coca-Cola Company 56
Commercialization of 5-HMF production by AVA Biochem 57
Eastman’s FDCA Technology 58
5-HMF and its derivatives’ oxidation to cFDCA 59
Eastman’s polymer-grade FDCA and polymer-grade DMF production technologies 63
cFDCA purification via post-oxidation process and solvent displacement 64
Dry pFDCA production via dual post-oxidation process 65
cFDCA purification via hydrogenation 66
Esterification process to make pDMF via vaporization 69
pDMF production using rectification 71
pDMF production using physical solid liquid separation 72
Purge processes 74
Off-gas treatment 75
Eastman’s US patents and published patent applications 76
DuPont FDME/PTF developments and partnership with Archer Daniels Midland 77
Corbion Purac developments in FDCA and PEF 77
Anellotech bio-based para-xylene developments 78
C₆ sugar (hexose) feedstock sourcing 79
PET bottle-grade resin target market for PEF 81
PET market size 81
PET bottle resin producing companies 82
PET bottle-grade resin market pricing 82

4 Chemistry and process technology

Avantium process overview 84
Fructose dehydration to HMF 84
HMF oxidation to FDCA 86
HMF oxidation chemistry 88
FDCA polymerization to PEF 90
Crude FDCA contaminant removal 91
Oxidation reactor product stream contaminant removal via mild hydrogenation 92
Other means to synthesize HMF from C₆ sugar 95
Converting agricultural biomass to C₆ sugar 96
Alternative methods to produce HMF from C₆ sugar via industrial chemistry 98
Oxidizing 5-HMF to FDCA using high-purity gaseous oxygen 105
Molecular structure and physical properties of FDCA 105
Means to synthesize FDCA (2,5-furan dicarboxylic acid) 106
Copolymerizing FDCA with EG to produce PEF via polycondensation 108
PEF physical properties 108
Physical properties of other polyesters made from FDCA 110
PEF performance properties 111
Beverage marking requirements 114
PEF economic advantage 115
Avantium’s process for making PEF bottle resin 115
Corbion Purac assessment of PEF properties 118
Avantium patent portfolio 119
Avantium partnership patent portfolio 124
5 Project design basis

Introduction
Scope of work
Specification deliverables
Plant site location
Design conditions
 Site location
 Facility site basis
Project economic basis
 Capital investment
 Construction capital cost index
 Project construction timing
 Production costs
Feedstock, product, and energy pricing
 High-fructose corn syrup feedstock price
 Monoethylene glycol (EG) feedstock price
Vent gas treatment
Effect of operating level on production costs
 Plant capacity utilization
Available plant utilities
Rotating equipment drivers
Continuous versus batch processing
Production capacity
Feedstock specifications
 High-fructose corn syrup feedstock specification
 Monoethylene glycol (EG) feedstock specification
 High-purity oxygen feedstock specification
 Methanol solvent specification
 Acetic acid solvent specification
 Hydrogen specification
Product specifications
 FDCA monomer manufacturing specification
 PEF bottle-grade resin manufacturing specification
 Feed and product storage
 Product run down tankage
 Capacity debottlenecking
 Manufacturing excellence
 Design philosophy
 Design priorities
 Process safety
 Process equipment reliability
 Environmental conformance
 Ease of operations and maintenance
 Return on investment criteria
 Security and vulnerability analysis
 Plant layout for process safety and ease of operations and maintenance
Environmental design standards and facilities
 Noise
Major project environmental emission sources
Incineration of process wastes
Atmospheric emissions
Flare gas management strategy
Ubiquitous online gas chromatograph analyzers
Computer control systems incorporating open field bus architectures
Redundant critical instrument sensors using three-way voting logic
Rotating machine condition monitoring instrumentation
Extensive use of inline particulate filters and emulsion coalescers
Real estate requirements
Regulatory environment and EHS standards
Construction methodology
Off-site facilities
Black start capability
Process control philosophy

6 2,5-Furan dicarboxylic acid (FDCA) monomer and DMF from C₆ sugar via Avantium technology

Introduction
Consideration of conventional PTA manufacturing technology
US EPA process description for PTA commercial manufacturing
British Petroleum PTA process
Eastman PTA process
Other commercial PTA processes and licensors
Comparison of PTA and FDCA processing
IHS design of DMF plant using Avantium technology
DMF input-output diagram
Segmentation of process
Section 100—MMF from C₆ sugar via dehydration
Section 100 (C₆ sugar dehydration) process description
Section 200—MMF purification
Section 200 (MMF purification) process description
Section 300—HMF oxidation to FDCA + DMF
Section 300 (MMF oxidation to DMF) process description
Section 400—Hydrogenation of crude FDCA and its dimethyl ester DMF
Section 400 (DMF hydrogenation) process description
Section 500—Oxidation section mother liquor recovery
Section 500 (mother liquor recovery and recycle) process description
Stream-by-stream material balance
DMF hourly production rate
PEF production
Hourly DMF production and composition
Material balance summary
Equipment list with duty specifications
Itemized capital cost estimate
Total fixed capital cost estimate
Production cost estimate
Variable production cost estimate
Fixed cost PEP estimating factors
Total production cost estimate
Process discussion
DMF comparative economics to DMT from para-xylene

7 Polyethylene furanoate polymer from dimethyl furanoate monomer

Introduction
Comparison of proposed PEF processing with conventional PET processing
US EPA process description of US PET operating plants
Other PET process technologies
Input-output diagram
Segmentation of process
Process description
 Section 100—Transesterification of DMF to DEF (bis hydroxy ethyl furanoate)
 Section 200—Polycondensation of DEF to low IV PEF polymer
 Section 300—Solid state polymerization (SSP) section
 PEF polymer chip classification
 Reject chip recycle
 PEF chip precrystallization
 PEF chip crystallization
Stream-by-stream material balance
Equipment list with duty specifications
Itemized capital cost estimate
Total fixed capital cost estimate
Production cost estimate
Process discussion
 PEF comparative economics to PET from PTA
8 Integrated PEF production process from C6 sugar
 Capital cost estimate
 Variable cost estimate
 Production cost estimate
 Comparative economics for integrating processes to produce PEF and PET
9 Technical data appendix
 Engineering and design standards
 General process safety considerations
 HAZOP/safety considerations
 FDCA/DMF environment health and safety concerns
 PEF and PET environmental, health, and safety concerns
 Other PTA process licensors and producers
 China National Petroleum Corporation PTA process
 Mitsubishi Chemical Corporation PTA process
 Hitachi PTA process
 Other PET process technologies
 Hitachi PET process
 Uhde Inventa-Fischer improvements to the conventional PET conversion process
 Mossi & Ghisolfi horizontal solid state polymerization reactor
 Invista NG3™ PET process
 Eastman IntegRex™ process
Appendix A—Cited references
Appendix B—Patents
Appendix B1—Avantium WIPO patents
Appendix B2—Furanix WIPO patents
Appendix B3—Patent summary tables
Appendix C—Process flow diagrams

Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Potential polyesters formed from FDCA</td>
<td>18</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Monomer derivatives of 2,5-dicarboxylic acid</td>
<td>18</td>
</tr>
<tr>
<td>Table 1.3</td>
<td>Potential end-use products from FDCA</td>
<td>20</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Potential polyesters formed from FDCA</td>
<td>23</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Potential end-use products from FDCA</td>
<td>24</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Major global bottled water companies</td>
<td>25</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>US commercial suppliers of HMF</td>
<td>29</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Performance properties of PEF compared to PET</td>
<td>31</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Physical property comparison of PET and PEF</td>
<td>32</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>Barrier and mechanical properties of biaxially oriented PEF and competing polymers</td>
<td>33</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>Price factors used for economic analysis in project</td>
<td>34</td>
</tr>
<tr>
<td>Table 2.9</td>
<td>Project FDCA product specification</td>
<td>35</td>
</tr>
<tr>
<td>Table 2.10</td>
<td>Project PEF bottle-grade resin product specification</td>
<td>36</td>
</tr>
<tr>
<td>Table 2.11</td>
<td>Hourly production rate of major feed and product streams</td>
<td>38</td>
</tr>
<tr>
<td>Table 2.12</td>
<td>DMF total production cost estimate</td>
<td>39</td>
</tr>
<tr>
<td>Table 2.13</td>
<td>Material balance summary for PEF polymer production</td>
<td>42</td>
</tr>
<tr>
<td>Table 2.14</td>
<td>PEF polymer total production cost estimate</td>
<td>43</td>
</tr>
<tr>
<td>Table 2.15</td>
<td>Capital cost estimate for integrated PEF process</td>
<td>44</td>
</tr>
<tr>
<td>Table 2.16</td>
<td>Production cost estimate for integrated PEF process</td>
<td>45</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Biopolymer global capacity—2013</td>
<td>50</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>IHS estimates of existing capacity for biopolymers—2015</td>
<td>50</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Major global bottled water companies</td>
<td>51</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Avantium equity investors in mid-2014</td>
<td>52</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>US DOE top-12 bio-based chemical applications</td>
<td>55</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>cFDCA oxidation reactor by-products</td>
<td>62</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>Oxidation of AMF feed to make cFDCA</td>
<td>62</td>
</tr>
<tr>
<td>Table 3.8</td>
<td>Secondary oxidation of crude FDCA</td>
<td>65</td>
</tr>
<tr>
<td>Table 3.9</td>
<td>pFDCA production specification using Eastman’s hydrogenation technology</td>
<td>69</td>
</tr>
<tr>
<td>Table 3.10</td>
<td>Eastman Chemical FDCA relevant US patents</td>
<td>76</td>
</tr>
<tr>
<td>Table 3.11</td>
<td>Eastman Chemical FDCA relevant US patent applications</td>
<td>77</td>
</tr>
<tr>
<td>Table 3.12</td>
<td>Properties of Corbion Purac PEF compared to PET</td>
<td>78</td>
</tr>
<tr>
<td>Table 3.13</td>
<td>Physical properties of fructose</td>
<td>81</td>
</tr>
<tr>
<td>Table 3.14</td>
<td>Major global PET bottle resin producers</td>
<td>82</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>US commercial suppliers of HMF</td>
<td>84</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Oxygenated HMF derivative by-products</td>
<td>86</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Performance properties of PEF compared to PET</td>
<td>91</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Physical properties of fructose</td>
<td>98</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>HMF physical property table</td>
<td>99</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Patents claiming dehydration of C₆ sugar to HMF</td>
<td>100</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Physical properties of 2,5-furan dicarboxylic acid</td>
<td>105</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Physical property comparison of PET and PEF</td>
<td>109</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Impact of crystallinity on PET and PEF density</td>
<td>110</td>
</tr>
<tr>
<td>Table 4.10</td>
<td>Physical properties of polyesters made from FDCA</td>
<td>111</td>
</tr>
<tr>
<td>Table 4.11</td>
<td>Barrier and mechanical properties of biaxially oriented PEF and competing polymers</td>
<td>112</td>
</tr>
<tr>
<td>Table 4.12</td>
<td>O₂ and CO₂ permeation rates for PEF and PET</td>
<td>112</td>
</tr>
<tr>
<td>Table 4.13</td>
<td>Corbion Purac implications for PEF improved performance over PET for bottle applications</td>
<td>119</td>
</tr>
<tr>
<td>Table 4.14</td>
<td>Avantium US patent portfolio</td>
<td>119</td>
</tr>
<tr>
<td>Table 4.15</td>
<td>Avantium US patent applications</td>
<td>120</td>
</tr>
<tr>
<td>Table 4.16</td>
<td>Avantium Chinese patent portfolio</td>
<td>120</td>
</tr>
<tr>
<td>Table 4.17</td>
<td>Avantium European patent portfolio</td>
<td>122</td>
</tr>
<tr>
<td>Table 4.18</td>
<td>Relevant patents granted to Avantium’s development partners</td>
<td>125</td>
</tr>
<tr>
<td>Table 4.19</td>
<td>US patents granted to Furanix</td>
<td>126</td>
</tr>
<tr>
<td>Table 4.20</td>
<td>Furanix US patent applications</td>
<td>133</td>
</tr>
<tr>
<td>Table 4.21</td>
<td>Furanix European patents</td>
<td>134</td>
</tr>
<tr>
<td>Table 4.22</td>
<td>Avantium laboratory apparatus</td>
<td>135</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Composition of corn syrup grades</td>
<td>152</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Physical properties of fructose</td>
<td>153</td>
</tr>
</tbody>
</table>
Table 5.6 Physical properties of monoethylene glycol
Table 5.7 Ethylene glycol project specification
Table 5.8 Oxygen physical properties
Table 5.9 Commercial oxygen specification by grade
Table 5.10 Methanol physical properties
Table 5.11 Methanol ASTM specification
Table 5.12 Physical properties of acetic acid
Table 5.13 Acetic acid project specification
Table 5.14 Hydrogen physical properties
Table 5.15 Hydrogen composition project specification
Table 5.16 Project FDCA product specification
Table 5.17 DMT physical property values
Table 5.18 Project DMF product specification
Table 5.19 Project PEF bottle-grade resin product specification
Table 5.20 Major off-site facilities incorporated into project scope
Table 6.1 Physical properties of n-propyl acetate
Table 6.2 Design basis table for converting HFCS to HMF + HMF ether
Table 6.3 Physical properties of MMF
Table 6.4 Design basis table for purifying MMF from solution
Table 6.5 Design basis table for oxidizing MMF with methanol to produce DMF
Table 6.6 Design basis table for Section 400 hydrogenating crude FDCA to remove color bodies
Table 6.7 Mother liquor stream components
Table 6.8 DMF product composition
Table 6.9 Hourly production rate of major feed and product streams
Table 6.10 Stream-by-stream material balance
Table 6.11 Equipment list with duty specifications
Table 6.12 Itemized capital cost estimate segmented by equipment type
Table 6.13 Itemized capital cost estimate by section of plant
Table 6.14 Itemized capital cost estimate by ISBL equipment number
Table 6.15 Total fixed capital cost estimate
Table 6.16 Raw materials unit cost estimate
Table 6.17 Energy and utilities unit cost estimate
Table 6.18 Variable production cost estimate
Table 6.19 Fixed production cost factors used by PEP
Table 6.20 Total production cost estimate
Table 6.21 DMF comparative production economics with DMT from p-xylene
Table 7.1 Design basis table for DMF transesterification to DEF
Table 7.2 Design basis table for DEF polycondensation to PEF polymer
Table 7.3 PET intrinsic viscosity as a function of customer end-use application
Table 7.4 Design basis table for solid state PEF polymerization
Table 7.5 Material balance summary for PEF polymer production
Table 7.6 Stream-by-stream material balance for PEF polymer production
Table 7.7 Equipment list with duty specifications
Table 7.8 Itemized capital cost estimate by section of plant
Table 7.9 Itemized capital cost estimate by type of equipment
Table 7.10 Itemized capital cost estimate
Table 7.11 Total fixed capital cost estimate
Table 7.12 Variable production cost estimate
Table 7.13 Total production cost estimate
Table 7.14 PEF comparative production economics with PET from PTA
Table 8.1 Capital cost estimate for integrated PEF process
Table 8.2 Variable cost estimate for integrated PEF process
Table 8.3 Production cost estimate for integrated PEF process
Table 8.4 PEF comparative production economics with PET from PTA
Table 9.1 Organizations providing project design standards
Table 9.2 HAZOP data inputs
Figures

Figure 1.1 Avantium’s approach to producing 100% biomass-based bottle resin 20
Figure 2.1 Avantium’s approach to producing 100% biomass-based bottle resin 23
Figure 2.2 Estimated global production of bioplastics 25
Figure 2.3 Molecular structures of glucose and fructose 27
Figure 2.4 Global distribution of PET bottle resin demand—2015 28
Figure 2.5 US PET bottle-grade resin historic prices 28
Figure 2.6 Stoichiometry for converting HMF to FDCA via oxidation 30
Figure 2.7 Shorter bonds and tighter angles of furan ring in PEF than benzene ring in PET 32
Figure 2.8 Comparison of PTA versus FDCA processing 37
Figure 2.9 DMF overall input-output diagram 38
Figure 2.10 Proposed process input-output diagram 41
Figure 2.11 Historical US PET market prices 44
Figure 2.12 Comparative capital cost for 300 kty DMT versus PTA 46
Figure 2.13 Comparative production economics for DMT and DMF 46
Figure 2.14 Comparative capital cost estimate for 250 kty PEF versus PET production plants 47
Figure 2.15 Comparative production economics for PET and PEF 47
Figure 2.16 Comparative integrated capital cost estimate for 250 kty PEF versus PET production plants 48
Figure 2.17 Comparative integrated production cost estimate for 250 kty PET versus PEF production plants 48
Figure 3.1 Estimated global production of bioplastics 49
Figure 3.2 Potential derivative of 5-hydroxymethylfurfural 58
Figure 3.3 Eastman’s cFDCA, polymer-grade FDCA, and polymer-grade DMF technologies 59
Figure 3.4 Preferred raw materials for Eastman FDCA technology 60
Figure 3.5 Stoichiometry for converting HMF to FDCA via oxidation 60
Figure 3.6 Effect of temperature on oxidation of 5-HMF to cFDCA 61
Figure 3.7 Stoichiometry for converting HMF to cFDCA via oxidation 62
Figure 3.8 Stoichiometry for converting 5-EMF to FDCA via oxidation 63
Figure 3.9 Stoichiometry for converting 5-MF to cFDCA via oxidation 63
Figure 3.10 Eastman’s post-oxidation purification to make FDCA 64
Figure 3.11 Eastman’s dual postoxidation purification process for pFDCA manufacturing 66
Figure 3.12 Eastman’s hydrogenation process for pFDCA manufacturing 66
Figure 3.13 Solubility of FDCA in water at various temperatures 67
Figure 3.14 Hydrogenation of FFCA to high-solubility monomers 68
Figure 3.15 FDCA hydrogenation pathway 69
Figure 3.16 Eastman’s pDMF vapor production process 70
Figure 3.17 Esterification of cFDCA with methanol 71
Figure 3.18 Eastman process for esterifying FDCA to its diethyl-ester 71
Figure 3.19 Eastman reactor design with rectification unit 72
Figure 3.20 Eastman’s polymer-grade dialkyl process using recrystallization and solid liquid separation 73
Figure 3.21 Eastman’s purge process 74
Figure 3.22 Eastman’s off-gas treatment and energy recovery from the off-gas stream 75
Figure 3.23 Anellotech Bio-TCat™ process schematic drawing 78
Figure 3.24 Molecular structures of glucose and fructose 79
Figure 3.25 HFCS-90 temperature versus viscosity curve 80
Figure 3.26 Global distribution of PET bottle resin demand—2015 82
Figure 3.27 US PET bottle-grade resin historical prices
Figure 4.1 Stoichiometry for converting glucose to fructose to HMF
Figure 4.2 Stoichiometry for converting HMF to FDCA via oxidation
Figure 4.3 Partial oxidation of HMF to FFCA
Figure 4.4 Partial oxidation of FFCA to FDCA
Figure 4.5 Stoichiometry for converting HMF ester to FDCA via oxidation
Figure 4.6 Stoichiometry for converting HMF ether to FDCA via oxidation
Figure 4.7 Stoichiometry for converting methyl furfural to FDCA via oxidation
Figure 4.8 Avantium transesterification reaction
Figure 4.9 Avantium polycondensation reaction
Figure 4.10 Formation of PTA contaminant p-toluic acid from by-product 4-CBA
Figure 4.11 Hydrogenation of FFCA to high-solubility monomers
Figure 4.12 FDCA hydrogenation pathway
Figure 4.13 Eastman process for esterifying FDCA to its diethyl-ester
Figure 4.14 Molecular structure of C₆ sugar isomers
Figure 4.15 HFCS-90 temperature versus viscosity curve
Figure 4.16 Furfural solution vapor-liquid equilibrium curves
Figure 4.17 Furfural generating device at 100% selectivity
Figure 4.18 HMF by hydrolysis in acidic solution
Figure 4.19 HMF recovery from rich solvent
Figure 4.20 Alfa Laval multieffect evaporator
Figure 4.21 Molecular pathway for oxidizing HMF to FDCA
Figure 4.22 Oxidation of monocarboxylic acid to dicarboxylic acid
Figure 4.23 Shorter bonds and tighter angles of furan ring in PEF than benzene ring in PET
Figure 4.24 Elasticity comparison of PEF and PET
Figure 4.25 Water loss across polyester bottle wall comparing PET with PEF
Figure 4.26 Simple schematic of polymer injection-molding operation
Figure 4.27 Transesterification of dimethyl furan ester using ethylene glycol
Figure 4.28 Polycondensation reaction to produce PEF at low molecular weight
Figure 4.29 Molecular pathway for FDCA transesterification and polycondensation to PEF polymer
Figure 4.30 Molecular pathway for PEF solid state polymerization
Figure 4.31 Water diffusivity comparison between PEF and PET
Figure 4.32 Corbion Purac’s comparison of water loss in PEF and PET bottles
Figure 4.33 Glucose feedstock conversion rates dehydration using alcohol
Figure 4.34 Monomethyl ester derivative of FDCA using HMF and HMF ether feedstock
Figure 4.35 Converting monomethyl ester of FDCA to dimethyl ester of FDCA
Figure 4.36 Acetic acid vapor pressure curve
Figure 4.37 Strain test results on coextruded PEF/PET at various PEF concentrations
Figure 4.38 Acid recovery system using proton ion exchange membranes in electrodialysis configuration
Figure 4.39 Module segmentation in Saltworks electrodialysis units
Figure 5.1 Project execution methodology
Figure 5.2 Historical PEP Cost Index for US
Figure 5.3 US high-fructose corn syrup prices
Figure 5.4 US ethylene glycol contract prices
Figure 5.5 US PET historical contract prices
Figure 5.6 Catalyst matrix for Johnson Matthey Halocat™ SC24 oxidation catalyst
Figure 5.7 High-fructose corn syrup viscosity curve
Figure 5.8 Monoethylene glycol vapor pressure curve
Figure 5.9 Generic two-stage cryogenic oxygen distillation system
Figure 5.10 Typical cryogenic air plant site plan
Figure 5.11 Methanol vapor pressure curve
Figure 5.12 Acetic acid vapor pressure curve
Figure 5.13 Hydrogen vapor pressure curve
Figure 5.14 Process flare discharge root causes
Figure 6.1 Air oxidation of p-xylene to terephthalic acid in acetic acid solvent
Figure 9.12	Block flow diagram for Hitachi PET process from PTA	333
Figure 9.13	UIF block flow diagram for PET process from PTA or DMT	334
Figure 9.14	UIF simplified process flow diagram of ESPREE® reactor configuration	336
Figure 9.15	Mossi & Ghisolfi horizontal SSP reactor configuration	337
Figure 9.16	Invista NG3™ PET simplified process schematic diagram	337
Figure 9.17	PET portion of Eastman IntegRex™ process	338
Figure C-1	Process flow diagram—FDCA from C6 sugar (Section 100)	400
Figure C-1	Process flow diagram—FDCA from C6 sugar (Section 200)	401
Figure C-1	Process flow diagram—FDCA from C6 sugar (Section 300)	402
Figure C-1	Process flow diagram—FDCA from C6 sugar (Section 400)	403
Figure C-1	Process flow diagram—FDCA from C6 sugar (Section 500)	404
Figure C-2	Process flow diagram—PEF polymer from DMF (Section 100)	405
Figure C-2	Process flow diagram—PEF polymer from DMF (Section 200)	406
Figure C-2	Process flow diagram—PEF polymer from DMF (Section 300)	407