Abstract

Syngas fermentation is a bioconversion technology of syngas/waste gas components to produce low-carbon biofuels. This technology is currently undergoing an intensive research and development phase. The fermentation process depends on the use of a microorganism called acetogen that generates acetate as a product of anaerobic repiration. Acetogens are found in a variety of habitats, generally those that are anaerobic. Acetogens can use a variety of compounds as sources of energy and carbon; the best-studied form of acetogenic metabolism involves the use of carbon dioxide as a carbon source, and hydrogen as an energy source.

A number of laboratory- and demonstration-scale studies have been done on the subject of using acetogens that have the ability to convert various synthesis gas (syngas) components (CO, CO₂, and H₂) to multicharacter compounds such as ethanol, 2,3-butanediol, acetate, butyrate, butanol, and lactate. At present, ethanol is the most noteworthy final product, followed by 2,3-butanediol. This bioconversion process occurs under mild conditions of temperature and pressure. Unlike conventional thermochemical processes, it does not require a specific H₂:CO ratio for converting the gas into fuels and chemicals.

Syngas fermentation technology is still in the commercializing stage. Several aspects affecting product output and yield are under constant review for improvements and refinements. Some of the noteworthy parameters that are a focus of research for ethanol and 2,3-butanediol production include yield, biological catalysts, process kinetics, mass transfer, catalytic separation, materials recycling/reusing, etc.

The objective of this report is to examine the abovementioned fermentation technologies, to evaluate their economics, and to offer a financial impact assessment on the economics resulting from variations in those process parameters.

In this report, we present a critical review of CO-rich gas fermentation processes to produce ethanol and 2,3-butanediol. We also present a comprehensive description of the fermentation product impurities, microorganisms, chemical reactions, separation techniques, bioreactor types, fermentation conditions, gas–liquid mass transfer, current industry status, process scale-up, and future directions for the technology. Further, we offer an analysis of LanzaTech technology; LanzaTech, a revolutionary carbon recycling company, is a major player in the developing syngas fermentation market, and has made big announcements recently about the commercialization of its technology.

The following cases are covered in this report:

2. Case II—LanzaTech syngas fermentation using biomass syngas, producing anhydrous ethanol as well as 2,3-butanediol.

We have used Aspen Plus™ and IHS internal tools to work out a process design and its economics. While the challenges associated with the scale-up and operation of this novel process remain with the selection of...
proper feedstock and variable product prices, syngas fermentation offers numerous advantages compared with the established fermentation or conventional thermochemical approaches for biofuel production. This process is capable of producing multiple products from the same gas stream and same hardware. The technology is feedstock-flexible, and microbial catalyst can utilize a range of gases with different H₂:CO composition while retaining product specificity.
Contents

1 Introduction 13
   First-generation biofuels 13
   Debate on first-generation biofuels 14
   Second-generation biofuels 15
   Second-generation biofuel feedstocks and technologies 15
   Syngas fermentation 17
   Advantages of syngas fermentation and comparison with Fischer-Tropsch (FT) process 19
   Advantages of syngas fermentation and comparison with other second-generation technologies 19

2 Summary 23
   Industry aspects 23
   Technical aspects 24
      LanzaTech syngas fermentation technology 24
      LanzaTech technology advances 25
   Economic aspects 26
      Capital cost economics comparison 27
      Product cost economics comparison 28
   Conclusions 30

3 Industry status 31
   Bioethanol and 2,3-butanediol production from syngas fermentation 31
   Major syngas fermentation companies and associated research 33
      University of Arkansas/Bioengineering Resources, Inc. 34
      Mississippi Ethanol LLC 34
      Mississippi State University 34
      Oklahoma State University 34
      Michigan Biotechnology Institute (MBI) 34
      Michigan State University 34
      Iowa State University 35
      Technical University of Denmark (Research project—SYNFERON) 35
      SYNPOL project 35
      Syngas Biofuels Energy, Inc. 36
      Evonik Industries (2-HIBA production via syngas fermentation) 37
      OPX Biotechnologies/Cargill, Inc. 37
      INEOS Bio 38
      Coskata, Inc./Synata Bio 38
      LanzaTech 39
      Global opportunities 42
         LanzaTech – SK innovation – INVISTA 42
         LanzaTech – DBT-IOC 44
         LanzaTech – Swedish Biofuels – Virgin Atlantic – HSBC 44
         LanzaTech – PETRONAS 46
         LanzaTech – Evonik Industries 46
         LanzaTech – NREL – University of Washington 46
         LanzaTech – Global Bioenergies 47
         LanzaTech – Siemens (Primetals Technologies) 47
         LanzaTech – Aemetis, Inc. 48

IHS™ CHEMICAL

COPYRIGHT NOTICE AND DISCLAIMER © 2016 IHS. For internal use of IHS clients only.
No portion of this report may be reproduced, reused, or otherwise distributed in any form without prior written consent, with the exception of any internal client distribution as may be permitted in the license agreement between client and IHS. Content reproduced or redistributed with IHS permission must display IHS legal notices and attributions of authorship. The information contained herein is from sources considered reliable, but its accuracy and completeness are not warranted, nor are the opinions and analyses that are based upon it, and to the extent permitted by law, IHS shall not be liable for any errors or omissions or any loss, damage, or expense incurred by reliance on information or any statement contained herein. In particular, please note that no representation or warranty is given as to the achievement or reasonableness of, and no reliance should be placed on, any projections, forecasts, estimates, or assumptions, and, due to various risks and uncertainties, actual events and results may differ materially from forecasts and statements of belief noted herein. This report is not to be construed as legal or financial advice, and use of or reliance on any information in this publication is entirely at client’s own risk. IHS and the IHS logo are trademarks of IHS.
4 Syngas fermentation technical review

- Methyl ethyl ketone (MEK) 54
- Butadiene 56

4 Syngas fermentation technical review

- Acetogens 60
- Process chemistry 60
- Organisms and products 65
- Acetate producers (CO₂ fermentation) 66
- Ethanol production 67
- Butanol 68
- 2,3-Butanediol 69
- Other products 70
- Factors affecting syngas fermentation 71
  - Gas composition and inhibiting compounds 71
  - Mass transfer 73
  - Reactor type 75
  - pH 75
  - Temperature 77
  - Growth media nutrients 77
  - Substrate pressure 79
  - Reducing agents (Redox potential) 80
  - Effect of trace metals 81
  - Fermentation operating mode 82
  - Effect of cell-recycle on syngas fermentation 84
- Bioreactors for syngas fermentation 85
  - Continuous stirred-tank reactor (CSTR) 85
  - Bubble column reactor (BCR) 86
  - Moving bed biofilm reactor (MBBR) 86
  - Membrane bioreactor (MBR) 86
  - Trickling bed reactor (TBR) 87
  - Microbubble dispersion stirred-tank reactor (MDSR) 87
- Inoculator 90
- Bioreactor versus chemical reactor 92
- Product yields of syngas fermentation 92
- Cell separation and product recovery 93
  - Liquid-liquid extraction 93
  - Perstraction/use of membranes 94
  - Pervaporation 94
- Gas stripping 95
- Strain improvement and metabolic engineering 95
- Process scale-up and commercialization 99
- Challenges and future R&D directions for commercialization 99
- Feedstock and quality of syngas 99
- Microbial catalysts 100
- Mass transfer limitations 100
- Product recovery 100
- Production cost 101
- Redirection of metabolic pathway 101
- Living system 101
- Availability and reliability 101

5 Case I—Ethanol production via syngas fermentation using biomass gasification syngas 102

- Syngas as renewable source of energy 102
- Biomass gasification 102
- Licensor (LanzaTech) technology review 104
- Feed gas handling system/gas pretreatment 105
- Inoculator 105
<table>
<thead>
<tr>
<th>6 Case II—Ethanol+2,3-butanediol production via syngas fermentation using biomass gasification syngas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Licensor SMB technology review</td>
</tr>
<tr>
<td>SMB separation unit</td>
</tr>
<tr>
<td>Bioreactor process control and operation for 2,3-butanediol production</td>
</tr>
<tr>
<td>Providing a hydrogen depleted gaseous stream (substrate)</td>
</tr>
<tr>
<td>Age of microbial cells</td>
</tr>
<tr>
<td>Specific rate of CO uptake</td>
</tr>
<tr>
<td>Increasing vitamin B1, B5, and B7 concentration</td>
</tr>
<tr>
<td>Other nutrient addition</td>
</tr>
<tr>
<td>Case assumptions</td>
</tr>
<tr>
<td>Process description</td>
</tr>
<tr>
<td>Gas storage and pretreatment (Section 100)</td>
</tr>
<tr>
<td>Fermentation (Section 200)</td>
</tr>
<tr>
<td>SMB process with distillation and ethanol dehydration (Section 300)</td>
</tr>
<tr>
<td>Process discussion</td>
</tr>
<tr>
<td>Cost estimate</td>
</tr>
<tr>
<td>Fixed capital costs</td>
</tr>
<tr>
<td>Production costs</td>
</tr>
</tbody>
</table>
Cost discussion and sensitivity analysis 156
Feedstock prices (syngas, media, and microbes) 156
Pretreatment cost impact 159
Battery limit and off-sites 160
By-products credit (2,3-BDO and tail gas) 161
Other sensitivity analysis with respect to plant capacity 162
Process yield 163
Depreciation and taxes 164

7 Case III—Ethanol production via syngas fermentation using steel mill gases 165
Introduction 165
Licensor (LanzaTech) technology review 165
Deoxygenation vessel 166
Gas clean-up/BTEX removal 166
Bioreactor process control and operation for ethanol production 169
Case assumptions 169
Process description 171
Gas storage and pretreatment (Section 100) 171
Fermentation (Section 200) 172
Distillation and dehydration (Section 300) 173
Process discussions 173
Cost estimate 178
Fixed capital costs 178
Production costs 180
Cost discussion and sensitivity analysis 182
Feedstock prices 182
Pretreatment cost impact 184
Battery limit and off-sites 185
By-products credit 185
Other sensitivity analysis with respect to plant capacity 186
Process yield 187
Depreciation and taxes 187

Appendix A—Patent summaries by assignee 188
Appendix B—Public domain literature (articles, books, and web presentations) 205
Appendix C—IHS internal reference 230
Appendix D—Process flow diagrams 232

Tables

Table 1.1 Comparison of first-generation versus second-generation biofuels 14
Table 1.2 Comparison between first-generation and second-generation biochemical, thermochemical, and gas fermentation biomass-to-biofuel technologies 21
Table 2.1 Overall comparison of three cases considered for LanzaTech syngas fermentation process 25
Table 2.2 Overall comparison of capital investment and production cost 26
Table 3.1 E2’s advanced biofuel capacity projections, 2013–16 32
Table 3.2 List of LanzaTech syngas fermentation plants 41
Table 3.3 World supply and demand for ethanol¹ 50
Table 3.4 Ethylene glycol, oxide, and derivatives report 52
Table 3.5 World supply and demand for methyl ethyl ketone—2014 56
Table 3.6 World supply and demand for butadiene—2015 58
Table 3.7 Butadiene price summary 59
Table 4.1 Mesophilic and thermophilic microorganisms fermenting syngas into fuels and chemicals 63
Table 4.2 Main reactions with syngas components during anaerobic syngas fermentation
Table 4.3 Characteristics of different syngas/CO-rich waste gas fermenting bacteria for ethanol production
Table 4.4 Syngas impurities and its effect
Table 4.5 Major impact parameters on bioethanol yield during syngas fermentation
Table 4.6 Volumetric mass transfer coefficients in various reactor configurations and hydrodynamic conditions
Table 4.7 Performance parameters of various bioreactors used in syngas fermentation
Table 4.8 Frequently used mesophilic and thermophilic microorganisms, and their optimum growth conditions
Table 4.9 Effect of minerals and trace metals on acetyl-CoA pathway
Table 4.10 Syngas fermentation operation modes
Table 4.11 Different type of syngas fermentation reactor
Table 4.12 Ethanol production using various components of syngas in bioreactors
Table 4.13 Maximum product and cell yields from different studies
Table 4.14 Genetically modified acetogens and their target product
Table 5.1 Gas composition of different gasification processes
Table 5.2 Potential impurities and their safe level for LanzaTech syngas fermentation process
Table 5.3 Media components for C. autoethanogenum
Table 5.4 C. autoethanogenum composite mineral and vitamin solutions
Table 5.5 Composite trace metal solution
Table 5.6 Basis of design
Table 5.7 Ethanol production via syngas fermentation using biomass syngas (Case I)—Material streams flow
Table 5.8 Ethanol production via syngas fermentation using biomass syngas (Case I)—Major equipment
Table 5.9 Ethanol production via syngas fermentation using biomass syngas (Case I)—Utility summary
Table 5.10 Ethanol production via syngas fermentation using biomass syngas (Case I)—Total capital investment
Table 5.11 Ethanol production via syngas fermentation using biomass syngas (Case I)—Capital investment by section
Table 5.12 Ethanol production via syngas fermentation using biomass syngas (Case I)—Production cost
Table 5.13 Combined effect of feedstock prices on net production cost and product value—Ethanol production via syngas fermentation using biomass syngas (Case I)
Table 5.14 Combined effect of feedstock prices on net production cost and product value (deleting gas holders and C2–C3 separation system)—Ethanol production via syngas fermentation using biomass syngas (Case I)
Table 6.1 Basis of design
Table 6.2 Ethanol+2,3-BDO production via syngas fermentation using biomass syngas (Case II)—Material streams flow
Table 6.3 Ethanol+2,3-BDO production via syngas fermentation using biomass syngas (Case II)—Major equipment
Table 6.4 Ethanol+2,3-BDO production via syngas fermentation using biomass syngas (Case II)—Utilities summary
Table 6.5 Ethanol+2,3-BDO production via syngas fermentation using biomass syngas (Case II)—Total capital investment
Table 6.6 Ethanol+2,3-BDO production via syngas fermentation using biomass syngas (Case II)—Capital investment by section
Table 6.7 Ethanol+2,3-BDO production via syngas fermentation using biomass syngas (Case II)—Production costs
Table 6.8 Ethanol+2,3-BDO production via syngas fermentation using biomass syngas (Case II)—Combined effect of feedstock prices on net production cost and product value
Table 6.9 Ethanol+2,3-BDO production via syngas fermentation using biomass syngas (Case II)—Combined effect of feedstock prices on net production cost and product value (deleting gas holders and C2–C3 separation system)
Table 6.10 Ethanol+2,3-BDO production via syngas fermentation using biomass syngas (Case II)—Effect of 2,3-BDO price change on net production cost and product value 161
Table 7.1 Liquid impact levels of BTEX components in the fermentation broth (US 20150152441) 168
Table 7.2 Basis of design 170
Table 7.3 Ethanol production via syngas fermentation using steel mill waste gases (Case III)—Material streams flow 174
Table 7.4 Ethanol production via syngas fermentation using steel mill waste gases (Case III)—Major equipment 176
Table 7.5 Ethanol production via syngas fermentation using steel mill waste gases (Case III)—Utility summary 178
Table 7.6 Ethanol production via syngas fermentation using steel mill waste gases (Case III)—Total capital investments 179
Table 7.7 Ethanol production via syngas fermentation using steel mill waste gases (Case III)—Capital investment by section 180
Table 7.8 Ethanol production via syngas fermentation using steel mill waste gases (Case III)—Production cost 181
Table 7.9 Ethanol production via syngas fermentation using steel mill waste gases (Case III)—Combined effect of feedstock prices on net production cost and product value 184
Table 7.10 Ethanol production via syngas fermentation using steel mill waste gases (Case III)—Combined effect of feedstock prices on net production cost and product value (omitting gas holders and BTEX removal system) 185

Figures

Figure 1.1 Simplified depiction of process steps for production of second-generation fuel ethanol 15
Figure 1.2 Overview of potential feedstock for production of second-generation biofuels 16
Figure 1.3 Novel approaches to biofuels and chemicals 17
Figure 1.4 Overview of gas fermentation process 18
Figure 1.5 Waste carbon streams as a resource for product synthesis 18
Figure 2.1 Capital cost comparison (battery limits and off-sites) 27
Figure 2.2 Capital cost versus plant capacity 28
Figure 2.3 Production cost comparison (variable, total direct, plant cash, plant gate and product value) 28
Figure 2.4 Net production cost versus operating level as a fraction of design capacity of plant 29
Figure 2.5 Product value versus operating level as a fraction of design capacity of plant 29
Figure 3.1 Syngas fermentation technology status to date 31
Figure 3.2 SYNPOL project 35
Figure 3.3 SYNPOL project platform 36
Figure 3.4 Syngas Biofuels Energy technology concept 36
Figure 3.5 INEOS gasification process for producing ethanol 38
Figure 3.6 Coskata process overview 39
Figure 3.7 LanzaTech gas-to-liquid platform 40
Figure 3.8 Potential to produce ethanol from waste sources 42
Figure 3.9 Two-step syngas-to-butadiene process 43
Figure 3.10 Conversion of acetate to lipids 44
Figure 3.11 Syngas fermentation process to produce jet fuels 45
Figure 3.12 Syngas-to-refined fuel via fermentation 46
Figure 3.13 Synergies and integration between steel mill process and LanzaTech syngas fermentation 47
Figure 3.14 World consumption of ethanol 49
Figure 3.15 Key chemical derived from ethanol 51
Figure 3.16 US ethanol and gasoline wholesale prices versus world ethanol prices 53
Figure 3.17 2,3- Butanediol derivatives and potential market 54
Figure 3.18 World consumption of methyl ethyl ketone
Figure 3.19 World consumption of butadiene
Figure 3.20 2,3-Butanediol derivatives and production estimates
Figure 4.1 Wood-Ljungdahl pathway of acetogens and their metabolic end products
Figure 4.2 Classification of genera capable of converting syngas to multicarbon compounds
Figure 4.3 General scheme of metabolite production from gas fermentation using native and genetically modified Clostridia
Figure 4.4 Schematic of bioreactor set-up with cell-recycle system
Figure 4.5 Schematic representation of various bioreactors for the conversion of syngas/CO-rich waste gas into ethanol
Figure 4.6 Steps of inoculation system
Figure 4.7 Growth curve of microbes for syngas fermentation
Figure 4.8 Continuous fermenter in situ with liquid-liquid extraction
Figure 4.9 Membrane separation
Figure 4.10 Schematic diagram of the pervaporation process
Figure 5.1 Schematic representation of the gasification process and further syngas bioconversion to biofuels and/or valuable chemicals
Figure 5.2 LanzaTech bioreactor configuration
Figure 5.3 LanzaTech bioreactor inside geometry
Figure 5.4 Two bioreactors in parallel
Figure 5.5 General syngas fermentation scheme with water recycle to fermenter
Figure 5.6 Syngas-to-ethanol simplified block flow diagram
Figure 5.7 Net production cost and product value of anhydrous ethanol as a function of biomass syngas price—Ethanol production via syngas fermentation using biomass syngas (Case I)
Figure 5.8 Net production cost and product value of anhydrous ethanol as a function of media price—Ethanol production via syngas fermentation using biomass syngas (Case I)
Figure 5.9 Net production cost and product value of anhydrous ethanol as a function of microbe price—Ethanol production via syngas fermentation using biomass syngas (Case I)
Figure 5.10 Effect of plant capacity on investment costs—Ethanol production via syngas fermentation using biomass syngas (Case I)
Figure 5.11 Net production cost of anhydrous ethanol as a function of operating level and plant capacity—Ethanol production via syngas fermentation using biomass syngas (Case I)
Figure 5.12 Product value of anhydrous ethanol as a function of operating level and plant capacity—Ethanol production via syngas fermentation using biomass syngas (Case I)
Figure 6.1 SMB unit schematic
Figure 6.2 Syngas to 2,3-butanediol and ethanol simplified block flow diagram
Figure 6.3 Wood-Ljungdhal pathway to acetyl-CoA, and then 2,3-BDO
Figure 6.4 Ethanol+2,3-BDO production via syngas fermentation using biomass syngas (Case II)—Net production cost and product value of anhydrous ethanol as a function of biomass syngas price
Figure 6.5 Ethanol+2,3-BDO production via syngas fermentation using biomass syngas (Case II)—Net production cost and product value of anhydrous ethanol as a function of media price
Figure 6.6 Ethanol+2,3-BDO production via syngas fermentation using biomass syngas (Case II)—Net production cost and product value of anhydrous ethanol as a function of microbe price
Figure 6.7 Ethanol+2,3-BDO production via syngas fermentation using biomass syngas (Case II)—Effect of plant capacity on investment costs
Figure 6.8 Ethanol+2,3-BDO production via syngas fermentation using biomass syngas (Case II)—Net production cost of anhydrous ethanol as a function of operating level and plant capacity
Figure 6.9 Ethanol+2,3-BDO production via syngas fermentation using biomass syngas (Case II)—Product value of anhydrous ethanol as a function of operating level and plant capacity
Figure 7.1 Understanding waste gases from a typical steel mill
Figure 7.2 Steel mill gas conditioning and clean-up
Figure 7.3  Deoxygenation vessel
Figure 7.4  Naphthalene and BTEX removal flow chart
Figure 7.5  Typical working of a PSA/TSA unit
Figure 7.6  Steel mill gas-to-ethanol simplified block flow diagram
Figure 7.7  Ethanol production via syngas fermentation using steel mill waste gases (Case III)—Net production cost and product value of anhydrous ethanol as a function of biomass syngas price
Figure 7.8  Ethanol production via syngas fermentation using steel mill waste gases (Case III)—Net production cost and product value of anhydrous ethanol as a function of media price
Figure 7.9  Ethanol production via syngas fermentation using steel mill waste gases (Case III)—Net production cost and product value of anhydrous ethanol as a function of microbe price
Figure 7.10  Ethanol production via syngas fermentation using steel mill waste gases (Case III)—Effect of plant capacity on investment costs
Figure 7.11  Ethanol production via syngas fermentation using steel mill waste gases (Case III)—Net production cost of anhydrous ethanol as a function of operating level and plant capacity
Figure 7.12  Ethanol production via syngas fermentation using steel mill waste gases (Case III)—Product value of anhydrous ethanol as a function of operating level and plant capacity

Figure 8.1  Case I—Ethanol production via syngas fermentation using biomass gasification syngas—Sections 100 and 200 (gas pretreatment and fermentation)
Figure 8.1  Case I—Ethanol production via syngas fermentation using biomass gasification syngas—Section 300 (distillation and dehydration)
Figure 8.1  Case I—Ethanol production via syngas fermentation using biomass gasification syngas—Section 200 (media and offsites)
Figure 8.2  Case II—Ethanol+2,3-butanediol production via syngas fermentation using biomass gasification syngas—Sections 100 and 200 (gas pretreatment and fermentation)
Figure 8.2  Case II—Ethanol+2,3-butanediol production via syngas fermentation using biomass gasification syngas—Section 300 (SMB technology and separation of ethanol and BDO)
Figure 8.2  Case II—Ethanol+2,3-butanediol production via syngas fermentation using biomass gasification syngas—Section 200 (media and offsites)
Figure 8.3  Case III—Ethanol production via syngas fermentation using steel mill gases—Sections 100 and 200 (gas pretreatment and fermentation)
Figure 8.3  Case III—Ethanol production via syngas fermentation using steel mill gases—Section 300 (distillation and dehydration)
Figure 8.3  Case III—Ethanol production via syngas fermentation using steel mill gases—Section 200 (media and offsites)
IHS Customer Care:

Americas: +1 800 IHS CARE (+1 800 447 2273); CustomerCare@ihs.com
Europe, Middle East, and Africa: +44 (0) 1344 328 300; Customer.Support@ihs.com
Asia and the Pacific Rim: +604 291 3600; SupportAPAC@ihs.com