INS CHEMICAL Direct Syngas to Light Olefins

Process Economics Program Report 299

December 2017

ihs.com

PEP Report 299

Direct Syngas to Light Olefins

Syed N. Naqvi Director

Marianne Asaro Director of Chemistry and Catalysis

RJ Chang Executive Director

PEP Report 299

Direct Syngas to Light Olefins

Syed N. Naqvi, Director Marianne Asaro, Director of Chemistry and Catalysis RJ Chang, Executive Director

Abstract

Indirect syngas-to-olefins technologies (syngas \rightarrow methanol \rightarrow olefins) allow selective production of light olefins (ethylene and propylene) at relatively lower costs than from conventional petroleum-based sources. They also provide an alternate route for olefins production from a nonpetroleum-based source. For that reason, those technologies have attained great importance and commercial popularity China, and potentially elsewhere, especially where coal is inexpensive. China, reportedly, has been building up its indirect syngas-to-light olefins capacity rapidly. Indirect processes, however, still face some major challenges, including high carbon dioxide emissions and high water demand. Direct syngas-to-olefins technologies (coal \rightarrow syngas \rightarrow olefins) are comparatively more efficient conceptually but have suffered from issues of catalyst lifetime and inadequate products selectivity. Still, as our evaluation in this report demonstrates, direct syngas-to-olefins processes are potentially somewhat more economically efficient, and also more environmentally efficient in terms of carbon utilization, than indirect processes when the two routes are compared on the basis of an integrated process with coal gasification.

This report examines two direct syngas-to-olefins technologies and presents technoeconomic assessments along with an overall picture of their carbon emissions. Both processes are designed to use coal-derived syngas. Economics are presented for the corresponding coal-integrated cases as well. The two technologies operate using different kinds of catalysts and different process conditions, and they produce somewhat different product slates. The following three technologies are presented and compared in economic terms.

- The OX-ZEO direct process for olefins production from syngas (developed by the Dalian Institute of Chemical Physics in China)
- The SARI direct process for light olefins production from syngas (developed by the Shanghai Advanced Research Institute)
- A direct olefins production technology (process economics only)

When compared within a coal-to-olefins production cycle, the direct technologies can substantially reduce the cost of production of olefins, by being somewhat more selective on a carbon utilization basis and by having a smaller overall process footprint. However, the long-term industrial and operational viability of each process remains to be seen. We believe that sustained capability of the catalysts on a long-term basis will be key to the success of these technologies.

© 2017 IHS

1

Contents

1	Introduction	7
2	Overview	3 10
	Commercial	10
	Technical	10
	Cost estimates	13
	Scope of economics	13
	Process economics	14
	Carbon emissions	15
	Overall view of direct processes	16
3	Industry status	18
	Demand and market drivers	18
	Current producers and plant capacities in China	20
	Product price	25
4	Technology review	27
	Indirect syngas to light olefins	27
	Direct syngas to light olefins by the DICP OX-ZEO technology	30
	Reaction pathway	33
	Acidity and porosity of the zeolite	34
	Patent disclosure for the OX-ZEO technology	35
	Abstract (from the patent)	35
	Background and prior art	35
	Description of the invention	36
	Dow light olefins technologies	41
	Summary of direct routes to light olefins from MMO and SAPO-34	43
	Direct syngas to light olefins by FTO technology	43
	Iron-based FTO catalysts	44
	Cobalt-based FTO catalysts	46
5	Olefins production from synthesis gas by OX-ZEO process	49
	Process economics scope	49
	Process description	50
	Crude product section—Section 100	51
	Products separation section—Section 200	52
	Refrigeration section—Section 300	53
	Process discussion	56
	Materials of construction	58
	Cost estimates	61
	Fixed-capital costs	61
~	Production costs	61
6	Olefins production from synthesis gas by SARI process	69
	Process economics scope	69
	Process description	/1
	Crude product section—Section 100	/1
	Products separation section—Section 200	72
	Reingeration Section—Section 300	73

IHS™ CHEMICAL

COPYRIGHT NOTICE AND DISCLAIMER © 2017 IHS. For internal use of IHS dients only. No portion of this report may be reproduced, reused, or otherwise distributed in any form without prior written consent, with the exception of any internal dient distribution as may be permitted in the license agreement between client and IHS. Content reproduced or redistributed with IHS permission must display IHS legal notices and attributions of authorship. The information contained herein is from sources considered reliable, but its accuracy and completeness are not warranted, nor are the opinions and analyses that are based upon it, and to the extent permitted by law, IHS shall not be liable for any errors or omissions or any loss, damage, or expense incurred by reliance on information or any statement contained herein. In particular, please note that no representation or warrantied, nor are the and results may differ materially from forecasts and statement or reasonableness of, and no reliance should be placed on, any projections, forecasts, estimates, or assumptions, and, due to various fisks and uncertainties, actual events and results may differ materially from forecasts and statements of belief noted herein. This report is not to be construed as legal or financial advice, and use of or reliance on any information in this publication is entirely at client's own risk. IHS and the IHS logo are trademarks of IHS.

Process discussion	77
Materials of construction	79
Cost estimates	83
Fixed-capital costs	83
Production costs	83
Appendix A—Patent summaries by assignee	91
Appendix B—Cited references	95
Appendix C—Patent numbers by organization	100
Appendix D—Process flow diagrams	102

Tables

Table 2.1	Summary of processes for direct production of light olefins from syngas via OX-ZEO	11
Table 2.2	Coal-to-olefins technologies—Comparison of direct and indirect processes costs	15
Table 3.1	China ethylene production capacity from coal-to-olefins (CTO) plants 2016–22 (KTPA)	22
Table 3.2	China ethylene production capacity from methanol-to-olefins (MTO) plants 2016–22	~~
10010 012	(KTPA)	22
Table 3.3	China propylene production capacity from coal-to-olefins (CTO) plants 2016–22 (KTPA)	24
Table 3.4	China propylene production capacity from coal-to-propylene (CTP) plants 2016–22	
	(KTPA)	24
Table 3.5	China propylene production capacity from methanol-to-olefins (MTO) plants 2016–22	
	(KTPA)	25
Table 3.6	China propylene production capacity from methanol-to-olefins (MTP) plants 2016–22	
	(KTPA)	25
Table 4.1	OX-ZEO catalyst preparation and performance as disclosed in WO 2017000427	
	(selected examples)	40
Table 4.2	Operating conditions and production distribution broad ranges cited in WO 2017000427	
	and WO 2017074558	42
Table 4.3	Effects S and Na promoters on performance of supported iron catalysts	44
Table 4.4	SARI catalyst preparation and performance as disclosed in CN 106391073 (selected	
	examples)	48
Table 5.1	Light olefins production from synthesis gas by OX-ZEO process—Design bases and	
	assumptions	54
Table 5.2	Light olefins production from syngas by OX-ZEO process—Main stream flows	55
Table 5.3	Light olefins production from syngas by OX-ZEO process—Major equipment	58
Table 5.4	Light olefins production from syngas by OX-ZEO process—Utilities summary	60
Table 5.5	Light olefins production from syngas by OX-ZEO process—Total capital investment	63
Table 5.6	Light olefins production from syngas by OX-ZEO process—Capital investment by	
	section	64
Table 5.7	Light olefins production from syngas by OX-ZEO process—Production costs	65
Table 5.8	Light olefins production from bituminous coal by OX-ZEO process in an integrated coal-	
	to-olefins plant—Utilities summary	67
Table 5.9	Light olefins production from bituminous coal by OX-ZEO process in an integrated coal-	
	to-olefins plant—Production costs	68
Table 6.1	Light olefins production from synthesis gas by SARI process—Design bases and	
	assumptions	75
Table 6.2	Light olefins production from syngas by SARI process—Main stream flows	76
Table 6.3	Light olefins production from syngas by OX-ZEO process—Major equipment	80
Table 6.4	Light olefins production from syngas by SARI process—Utilities summary	82
Table 6.5	Light olefins production from syngas by SARI process—Total capital investment	85
Table 6.6	Light olefins production from syngas by SARI process—Capital investment by section	86
I able 6.7	Light olefins production from syngas by SARI process—Production costs	87

© 2017 IHS

December 2017

Downloaded 26 December 2017 10:42 AM UTC by Gomathi N, IHS (Gomathi.N@ihsmarkit.com) - For Use by Licensed Subscribers Only

Table 6.8 Light olefins production from bituminous coal by SARI process in an integrated coal-to-	
olefins plant—Utilities summary	89
Table 6.9 Light olefins production from bituminous coal by SARI process in an integrated coal-to-	
olefins plant—Production costs	90

Figures

Figure 3.1 Global ethylene demand by region	19
Figure 3.2 Global propylene demand by region	19
Figure 3.3 Patents on direct production of lower olefins via Fischer–Tropsch in relation	n to oil price
during 1955–2013	20
Figure 3.4 Ethylene capacity in China 2012–22	20
Figure 3.5 Ethylene capacity share by feedstock in China 2012/2016/2022	21
Figure 3.6 Propylene capacity in China 2012–22	23
Figure 3.7 Propylene capacity share by feedstock in China 2012/2016/2022	23
Figure 3.8 Ethylene price	26
Figure 3.9 Propylene price	26
Figure 4.1 Indirect and direct routes from syngas to light olefins	27
Figure 4.2 DICP's DMTO and DMTO-II processes	28
Figure 4.3 Schematic of DICP's DMTO-II process	29
Figure 4.4 Reaction scheme of syngas over the OX-ZEO catalyst	31
Figure 4.5 CO conversion and product distribution of OX-ZEO catalyst with variation	of H ₂ /CO
molar ratio	31
Figure 4.6 Product distribution comparison of OX-ZEO with FTO and F–T catalysts	32
Figure 4.7 Stability test of a composite catalyst with ZnCrOx/MSAPO	33
Figure 4.8 Effect of Na and S electronic additives on coke formation	45
Figure 5.1 Light olefins production from syngas by OX-ZEO process—Section 100 (c	rude product
section)	103
Figure 5.1 Light olefins production from syngas by OX-ZEO process—Section 200 (p	roducts
separation section)	104
Figure 5.1 Light olefins production from syngas by OX-ZEO process—Section 300 (re	efrigeration
section)	105
Figure 6.1 Light olefins production from syngas by SARI process—Section 100 (crude	e product
section)	106
Figure 6.1 Light olefins production from syngas by SARI process—Section 200 (prod	uct
separation section)	107
Figure 6.1 Light olefins production from syngas by SARI process—Section 300 (refrig	geration
section)	108

4

IHS Customer Care:

Americas: +1 800 IHS CARE (+1 800 447 2273); CustomerCare@ihs.com Europe, Middle East, and Africa: +44 (0) 1344 328 300; Customer.Support@ihs.com Asia and the Pacific Rim: +604 291 3600; SupportAPAC@ihs.com

