Abstract

Indirect syngas-to-olefins technologies (syngas→methanol→olefins) allow selective production of light olefins (ethylene and propylene) at relatively lower costs than from conventional petroleum-based sources. They also provide an alternate route for olefins production from a nonpetroleum-based source. For that reason, those technologies have attained great importance and commercial popularity China, and potentially elsewhere, especially where coal is inexpensive. China, reportedly, has been building up its indirect syngas-to-light olefins capacity rapidly. Indirect processes, however, still face some major challenges, including high carbon dioxide emissions and high water demand. Direct syngas-to-olefins technologies (coal→syngas→olefins) are comparatively more efficient conceptually but have suffered from issues of catalyst lifetime and inadequate products selectivity. Still, as our evaluation in this report demonstrates, direct syngas-to-olefins processes are potentially somewhat more economically efficient, and also more environmentally efficient in terms of carbon utilization, than indirect processes when the two routes are compared on the basis of an integrated process with coal gasification.

This report examines two direct syngas-to-olefins technologies and presents technoeconomic assessments along with an overall picture of their carbon emissions. Both processes are designed to use coal-derived syngas. Economics are presented for the corresponding coal-integrated cases as well. The two technologies operate using different kinds of catalysts and different process conditions, and they produce somewhat different product slates. The following three technologies are presented and compared in economic terms.

- The OX-ZEO direct process for olefins production from syngas (developed by the Dalian Institute of Chemical Physics in China)

- The SARI direct process for light olefins production from syngas (developed by the Shanghai Advanced Research Institute)

- A direct olefins production technology (process economics only)

When compared within a coal-to-olefins production cycle, the direct technologies can substantially reduce the cost of production of olefins, by being somewhat more selective on a carbon utilization basis and by having a smaller overall process footprint. However, the long-term industrial and operational viability of each process remains to be seen. We believe that sustained capability of the catalysts on a long-term basis will be key to the success of these technologies.
Contents

1 **Introduction**
2 **Summary**
 - Overview
 - Commercial
 - Technical
 - Cost estimates
 - Scope of economics
 - Process economics
 - Carbon emissions
 - Overall view of direct processes
3 **Industry status**
 - Demand and market drivers
 - Current producers and plant capacities in China
 - Product price
4 **Technology review**
 - Direct syngas to light olefins by the DICP OX-ZEO technology
 - Reaction pathway
 - Acidity and porosity of the zeolite
 - Patent disclosure for the OX-ZEO technology
 - Abstract (from the patent)
 - Background and prior art
 - Description of the invention
 - Dow light olefins technologies
 - Summary of direct routes to light olefins from MMO and SAPO-34
 - Direct syngas to light olefins by FTO technology
 - Iron-based FTO catalysts
 - Cobalt-based FTO catalysts
5 **Olefins production from synthesis gas by OX-ZEO process**
 - Process economics scope
 - Process description
 - Crude product section—Section 100
 - Products separation section—Section 200
 - Refrigeration section—Section 300
 - Process discussion
 - Materials of construction
 - Cost estimates
 - Fixed-capital costs
 - Production costs
6 **Olefins production from synthesis gas by SARI process**
 - Process economics scope
 - Process description
 - Crude product section—Section 100
 - Products separation section—Section 200
 - Refrigeration section—Section 300

IHS Chemical | PEP Report 299 Direct Syngas to Light Olefins

IHS™ CHEMICAL

COPYRIGHT NOTICE AND DISCLAIMER
© 2017 IHS. For internal use of IHS clients only.
No portion of this report may be reproduced, reused, or otherwise distributed in any form without prior written consent, with the exception of any internal client distribution as may be permitted in the license agreement between client and IHS. Content reproduced or redistributed with IHS permission must display IHS legal notices and attributions of authorship. The information contained herein is from sources considered reliable, but its accuracy and completeness are not warranted, nor are the opinions and analyses that are based upon it, and to the extent permitted by law, IHS shall not be liable for any errors or omissions or any loss, damage, or expense incurred by reliance on information or any statement contained herein. In particular, please note that no representation or warranty is given as to the achievement or reasonableness of, and no reliance should be placed on, any projections, forecasts, estimates, or assumptions, and, due to various risks and uncertainties, actual events and results may differ materially from forecasts and statements of belief noted herein. This report is not to be construed as legal or financial advice, and use of or reliance on any information in this publication is entirely at client’s own risk. IHS and the IHS logo are trademarks of IHS.

Downloaded 26 December 2017 10:42 AM UTC by Gomathi N, IHS (Gomathi.N@ihs-markit.com) - For Use by Licensed Subscribers Only
Tables

Table 2.1 Summary of processes for direct production of light olefins from syngas via OX-ZEO and SARI technologies 11
Table 2.2 Coal-to-olefins technologies—Comparison of direct and indirect processes costs 15
Table 3.1 China ethylene production capacity from coal-to-olefins (CTO) plants 2016–22 (KTPA) 22
Table 3.2 China ethylene production capacity from methanol-to-olefins (MTO) plants 2016–22 (KTPA) 22
Table 3.3 China propylene production capacity from coal-to-olefins (CTO) plants 2016–22 (KTPA) 24
Table 3.4 China propylene production capacity from coal-to-propylene (CTP) plants 2016–22 (KTPA) 24
Table 3.5 China propylene production capacity from methanol-to-olefins (MTO) plants 2016–22 (KTPA) 25
Table 3.6 China propylene production capacity from methanol-to-olefins (MTP) plants 2016–22 (KTPA) 25
Table 4.1 OX-ZEO catalyst preparation and performance as disclosed in WO 2017000427 (selected examples) 40
Table 4.2 Operating conditions and production distribution broad ranges cited in WO 2017000427 and WO 2017074558 42
Table 4.3 Effects S and Na promoters on performance of supported iron catalysts 44
Table 4.4 SARI catalyst preparation and performance as disclosed in CN 106391073 (selected examples) 48
Table 5.1 Light olefins production from synthesis gas by OX-ZEO process—Design bases and assumptions 54
Table 5.2 Light olefins production from syngas by OX-ZEO process—Main stream flows 55
Table 5.3 Light olefins production from syngas by OX-ZEO process—Major equipment 58
Table 5.4 Light olefins production from syngas by OX-ZEO process—Utilities summary 60
Table 5.5 Light olefins production from syngas by OX-ZEO process—Total capital investment 63
Table 5.6 Light olefins production from syngas by OX-ZEO process—Capital investment by section 64
Table 5.7 Light olefins production from syngas by OX-ZEO process—Production costs 65
Table 5.8 Light olefins production from bituminous coal by OX-ZEO process in an integrated coal-to-olefins plant—Utilities summary 67
Table 5.9 Light olefins production from bituminous coal by OX-ZEO process in an integrated coal-to-olefins plant—Production costs 68
Table 6.1 Light olefins production from synthesis gas by SARI process—Design bases and assumptions 75
Table 6.2 Light olefins production from syngas by SARI process—Main stream flows 76
Table 6.3 Light olefins production from syngas by OX-ZEO process—Major equipment 80
Table 6.4 Light olefins production from syngas by SARI process—Utilities summary 82
Table 6.5 Light olefins production from syngas by SARI process—Total capital investment 85
Table 6.6 Light olefins production from syngas by SARI process—Capital investment by section 86
Table 6.7 Light olefins production from syngas by SARI process—Production costs 87
Table 6.8 Light olefins production from bituminous coal by SARI process in an integrated coal-to-olefins plant—Utilities summary
Table 6.9 Light olefins production from bituminous coal by SARI process in an integrated coal-to-olefins plant—Production costs

Figures

Figure 3.1 Global ethylene demand by region
Figure 3.2 Global propylene demand by region
Figure 3.3 Patents on direct production of lower olefins via Fischer–Tropsch in relation to oil price during 1955–2013
Figure 3.4 Ethylene capacity in China 2012–22
Figure 3.5 Ethylene capacity share by feedstock in China 2012/2016/2022
Figure 3.6 Propylene capacity in China 2012–22
Figure 3.7 Propylene capacity share by feedstock in China 2012/2016/2022
Figure 3.8 Ethylene price
Figure 3.9 Propylene price
Figure 4.1 Indirect and direct routes from syngas to light olefins
Figure 4.2 DICP’s DMTO and DMTO-II processes
Figure 4.3 Schematic of DICP’s DMTO-II process
Figure 4.4 Reaction scheme of syngas over the OX-ZEO catalyst
Figure 4.5 CO conversion and product distribution of OX-ZEO catalyst with variation of H2/CO molar ratio
Figure 4.6 Product distribution comparison of OX-ZEO with FTO and F–T catalysts
Figure 4.7 Stability test of a composite catalyst with ZnCrOx/MSAPO
Figure 4.8 Effect of Na and S electronic additives on coke formation
Figure 5.1 Light olefins production from syngas by OX-ZEO process—Section 100 (crude product section)
Figure 5.1 Light olefins production from syngas by OX-ZEO process—Section 200 (products separation section)
Figure 5.1 Light olefins production from syngas by OX-ZEO process—Section 300 (refrigeration section)
Figure 6.1 Light olefins production from syngas by SARI process—Section 100 (crude product section)
Figure 6.1 Light olefins production from syngas by SARI process—Section 200 (product separation section)
Figure 6.1 Light olefins production from syngas by SARI process—Section 300 (refrigeration section)