IHS CHEMICAL Dimethyl Carbonate

Process Economics Program Report 301

October 2017

ihs.com

PEP Report 301

Dimethyl Carbonate

Syed Naqvi Director Research and Analysis

Dipti Dave` Principal Research Analyst

PEP Report 301

Dimethyl Carbonate

Syed Naqvi, Director Research and Analysis Dipti Dave`, Principal Research Analyst

Abstract

Dimethyl carbonate (DMC) is an important industrial chemical. It is used as an intermediate for making polycarbonate, which consumes roughly 50% of its production. Other notable areas of its use include solvents, pesticides, and pharmaceuticals. It is also used as a chemical reagent, particularly for methylation and methoxycarbonylation reactions. It is nontoxic to humans and does not negatively impact the environment, and is also quickly biodegradable, which makes it especially suitable for use as a chemical.

DMC is considered and recommended by some environment and industry experts as a viable choice for use as an oxygenate in transportation fuels, primarily due to its favorable properties needed for fuels—it has about three times more oxygen than methyl tertiary butyl ether (MTBE), and its other plus points as a fuel additive include low vapor pressure, low toxicity, higher boiling point, nonhygroscopic nature, complete miscibility with fuels, and its overall attractive emissions characteristics as a fuel component. If DMC's use as a fuel oxygenate is accepted officially, that would open an enormous market for it. In addition to being environmentally friendly, DMC can also be prepared from natural gas (methanol and CO) and oxygen (air). Hence, unlike MTBE or other solvents, it is not a petroleum derivative. Thus, DMC can potentially also reduce dependence on imported oil.

Traditional synthesis of DMC required toxic and hazardous phosgene as a base material. This disadvantage of the source material prompted researchers to investigate alternate routes for DMC manufacturing that would lower the impact of DMC use on human health and the environment without seriously affecting the economics of production.

This report, therefore, presents technoeconomic assessments of three such nonphosgene-based technologies for DMC production listed below, and the process economics only for the fourth technology listed below:

- Versalis/CB&I's liquid-phase direct methanol oxycarbonylation technology
- Ube's gas-phase indirect methanol oxycarbonylation technology
- Two-step urea-methanol transesterification technology (not commercialized yet)
- Asahi's ethylene carbonate-methanol transesterification technology (only process economics)

The urea-based technology is in the development and refining stage. Different researchers and developers are trying to improve the overall yield of DMC in the process. This technology is now owned by CB&I, which has currently stopped further work on it.

Versalis/CB&I's methyl oxycarbonylation technology is based on a single-step, liquid-phase, cuprous chloride–catalyzed process, which was originally developed by Polymeri/EniChem. Versalis was created as a subsidiary or rename for Polymeri/EniChem. CB&I is the partner in licensing and engineering of contracts. Our evaluation of the technology is based on a single-train plant, producing about 25,000 metric tons per annum (MTPA) of DMC. The chemistry of the process is simple, but small amounts of corrosive by-products are generated that necessitate the use of glass-lined material for certain equipment. The overall

© 2017 IHS

yield of DMC, according to IHS estimates, is 91.9% (based on methanol). Versalis/CB&I primarily produces DMC for the merchandise market.

Ube's methanol oxycarbonylation technology is based on a two-step (or indirect), gas-phase, palladiumcopper chloride–catalyzed process. This process has a somewhat more complex chemistry. In the firstphase, methyl nitrite (MN) is carbonyl-ated producing DMC and nitric oxide (NO) in a fixed-bed reactor. In the second step, NO reacts noncatalytically with oxygen and methanol, producing MN and water. This MN is recycled into the first step. Hence, basically only CO, O₂, and methanol are consumed in the process. Overall yield of DMC is equivalent to 92.5% (based on methanol). Ube's process, according to IHS estimates, is somewhat costlier than Versalis/CB&I's process in terms of capital cost. However, the production cost of DMC for the two processes is pretty close, mainly due to the fact that the Ube process produces dimethyl oxalate also as a by-product, which improves the economy of the process. Ube produces DMC primarily to sell it in the merchandise market.

Our third technology analysis is for DMC production by a urea transesterification process using methanol. Since this process is not commercialized yet, a generic-type analysis is presented, based on the data given in the patents of Catalytic Distillation Technologies (CDTECH). The conversion of urea-methanol to DMC is carried out in two steps—first, the urea is converted to methyl carbamate (MC) by reacting with methanol at relatively low temperatures (e.g., 100°C in the presence of a catalyst, or 150°C without catalyst); then, the carbamate is further reacted with methanol at 180–190°C in the presence of a catalyst, producing DMC.

Contents

1 2	Introduction Summary Overview Commercial Technical Technologies Versalis/CB&I liquid-phase technology Ube gas-phase technology Urea methanolysis technology	8 10 10 12 14 14 15 16
	Cost estimates Process economics scope Methanol oxycarbonylation processes (Versalis/CB&I technology versus Ube technology)	17 17 18
3	Market status	23
4	Technical review	28
	DMC production route alternatives	28
	Synthesis of DMC by phosgene methanolysis	28
	Synthesis of DIVIC by oxidative carbonylation of methanol	29
	Cas phase oxidative carbonylation of methanol (direct method)	23
	Gas-phase oxidative carbonylation of methanol (indirect method)	33
	Dimethyl carbonate from transesterification of ethylene carbonate	34
	Dimethyl carbonate from methanolysis of urea	37
5	Dimethyl carbonate production by Versalis/CB&I process	46
	Process economics scope	46
	Process description	47
	Process discussion	52
	Feedstock	52
	By-product organic compounds removal	52
	Process streams	52
	Materials of construction	53
	Miscellaneous plant sections	53
		55
	Fixed-capital costs	55
6	Production costs	00
0	Process economics scope	60
	Process description	61
	Process discussion	65
	Feedstock	65
	Products separation	66
	Materials of construction	66
	Miscellaneous plant sections	66
	Cost estimates	69
	Fixed-capital costs	69
	Production costs	69

IHS™ CHEMICAL

COPYRIGHT NOTCE AND DISCLAIMER © 2017 IHS. For internal use of IHS clients only. No portion of this report may be reproduced, reused, or otherwise distributed in any form without prior written consent, with the exception of any internal client distribution as may be permitted in the license agreement between client and IHS. Content reproduced or redistributed with IHS permission must display IHS legal notices and attributions of authorship. The information contained herein is from sources considered reliable, but its accuracy and completeness are not warranted, nor are the opinions and analyses that are based upon it, and to the extent permitted by law, IHS shall not be liable for any errors or omissions or any loss, damage, or expense incurred by reliance on information or any statement contrained herein. The particular, please note that no representation or warrants is given as to the achievement or reasonableness of, and no reliance should be placed on, any projections, forecasts, estimates, or assumptions, and, due to various fisks and uncertainties, actual events and results may differ materially from forecasts and statements of belief note herein. This report is not to be construed as legal or financial advice, and use of or reliance on any information in this publication is entirely at client's own risk. IHS and the IHS logo are trademarks of IHS.

7 Dimethyl carbonate production by Catalytic Distillation Technologies	73	
Process economics scope	73	
Process description	74	
Process discussion	78	
Feedstock	78	
Reactive distillation	78	
Materials of construction	78	
Miscellaneous plant sections	79	
Cost estimates	81	
Fixed-capital costs	81	
Production costs	82	
Appendix A—Patent summaries		
Appendix B—Design and cost basis		
Design conditions	101	
Cost bases	101	
Capital investment	101	
Production costs	102	
Effect of operating level on production costs	102	
Appendix C—Cited references	104	
Appendix D—Process flow diagrams	106	

Tables

Table 2.1 Global DMC production forecast by global regions (2017–22)	11
Table 2.2 Methanol oxycarbonate technologies—Total capital investment	19
Table 2.3 Methanol oxycarbonate technologies—Production costs	20
Table 2.4 Urea and ethylene oxide transesterification technologies—Total capital investment	21
Table 2.5 Urea and ethylene oxide transesterification technologies—Production costs	22
Table 3.1 Global DMC production forecast by global regions (2017–22)	24
Table 3.2 Global DMC production forecast by application type (2017–22)	25
Table 3.3 Global DMC consumption forecast for different regions of the world (2017–22)	26
Table 4.1 Catalyst metal effect on DMC yield	30
Table 4.2 Effect of catalyst anions on DMC yield	30
Table 4.3 Effect of catalyst support on DMC yield	30
Table 4.4 Effect of copper catalyst promoters on DMC yield	31
Table 4.5 Effect of ratio of the copper catalyst promoters on DMC yield	31
Table 4.6 Performance of zinc/yttrium catalysts in DMC synthesis	37
Table 4.7 Performance of lanthanum catalysts in DMC synthesis ^a	38
Table 4.8 Effect of different catalysts on MC and DMC yields ^a	41
Table 4.9 Performance of solid-base catalysts in DMC synthesis	43
Table 4.10 Effect of catalysts on MC and DMC yields ^a	43
Table 5.1 DMC production by Versalis/CB&I process—Design bases and assumptions	49
Table 5.2 DMC production by Versalis/ CB&I process—Main stream flows	49
Table 5.3 DMC production by Versalis/CB&I process—Major equipment	54
Table 5.4 DMC production by Versalis/CB&I process—Utilities summary	55
Table 5.5 DMC production by Versalis/CB&I process—Total capital investment	57
Table 5.6 DMC production by Versalis/CB&I process—Production costs	58
Table 6.1 DMC production by Ube indirect gas-phase process—Design bases and assumptions	63
Table 6.2 DMC production by Ube indirect gas-phase process—Main stream flows	64
Table 6.3 DMC production by Ube indirect gas-phase process—Major equipment	67
Table 6.4 DMC production by Ube indirect gas-phase process—Utilities summary	68
Table 6.5 DMC production by Ube indirect gas-phase process—Total capital investment	70

© 2017 IHS

October 2017

Downloaded 5 October 2017 04:56 AM UTC by Ellen Blue, IHS INC (Ellen.Blue@ihsmarkit.com) - For Use by Licensed Subscribers Only

4

Table 6.6 DMC production by Ube indirect gas-phase process—Production costs	71
Table 7.1 DMC production by CDTECH—Design bases and assumptions	76
Table 7.2 DMC production by CDTECH—Main stream flows	76
Table 7.3 DMC production waste streams	78
Table 7.4 DMC by CDTECH—Utilities summary	79
Table 7.5 DMC by CDTECH—Major equipment	80
Table 7.6 DMC by CDTECH—Total capital investment	83
Table 7.7 DMC by CDTECH—Production costs	84

Figures

Figure 2.1 World consumption of DMC in 2016	10
Figure 2.2 Global DMC production share forecast by global regions (2017–22)	11
Figure 2.3 Global DMC production share forecast by application type (2017–22)	12
Figure 3.1 World consumption of DMC in 2016	23
Figure 3.2 Global DMC production share forecast by global regions (2017–22)	24
Figure 3.3 Global DMC production share forecast by application type (2017–22)	25
Figure 3.4 Global DMC production share forecast from different processes (2017–22)	26
Figure 3.5 Global DMC consumption share forecast by global regions (2017–22)	27
Figure 3.6 Global DMC consumption share forecast by applications (2017–22)	27
Figure 4.1 Effect of reaction temperature on DMC synthesis	39
Figure 4.2 Effect of reaction time on DMC synthesis	39
Figure 4.3 Effect of reaction temperature on DMC yield in catalytic distillation reactor	44
Figure 4.4 Effect of urea LHSV on DMC yield in catalytic distillation reactor	45
Figure 5.1 DMC production by Versalis/Lummus process	107
Figure 6.1 DMC production by Ube indirect gas-phase process	108
Figure 7.1 DMC production by CDTECH—Section 100 (sheet 1 of 2)	109
Figure 7.1 DMC production by CDTECH—Section 200 (sheet 2 of 2)	110

IHS Customer Care:

Americas: +1 800 IHS CARE (+1 800 447 2273); CustomerCare@ihs.com Europe, Middle East, and Africa: +44 (0) 1344 328 300; Customer.Support@ihs.com Asia and the Pacific Rim: +604 291 3600; SupportAPAC@ihs.com

