Abstract

Dimethyl carbonate (DMC) is an important industrial chemical. It is used as an intermediate for making polycarbonate, which consumes roughly 50% of its production. Other notable areas of its use include solvents, pesticides, and pharmaceuticals. It is also used as a chemical reagent, particularly for methylation and methoxycarbonylation reactions. It is nontoxic to humans and does not negatively impact the environment, and is also quickly biodegradable, which makes it especially suitable for use as a chemical.

DMC is considered and recommended by some environment and industry experts as a viable choice for use as an oxygenate in transportation fuels, primarily due to its favorable properties needed for fuels—it has about three times more oxygen than methyl tertiary butyl ether (MTBE), and its other plus points as a fuel additive include low vapor pressure, low toxicity, higher boiling point, nonhygroscopic nature, complete miscibility with fuels, and its overall attractive emissions characteristics as a fuel component. If DMC’s use as a fuel oxygenate is accepted officially, that would open an enormous market for it. In addition to being environmentally friendly, DMC can also be prepared from natural gas (methanol and CO) and oxygen (air). Hence, unlike MTBE or other solvents, it is not a petroleum derivative. Thus, DMC can potentially also reduce dependence on imported oil.

Traditional synthesis of DMC required toxic and hazardous phosgene as a base material. This disadvantage of the source material prompted researchers to investigate alternate routes for DMC manufacturing that would lower the impact of DMC use on human health and the environment without seriously affecting the economics of production.

This report, therefore, presents technoeconomic assessments of three such nonphosgene-based technologies for DMC production listed below, and the process economics only for the fourth technology listed below:

- Versalis/CB&I’s liquid-phase direct methanol oxycarbonylation technology
- Ube’s gas-phase indirect methanol oxycarbonylation technology
- Two-step urea-methanol transesterification technology (not commercialized yet)
- Asahi’s ethylene carbonate-methanol transesterification technology (only process economics)

The urea-based technology is in the development and refining stage. Different researchers and developers are trying to improve the overall yield of DMC in the process. This technology is now owned by CB&I, which has currently stopped further work on it.

Versalis/CB&I’s methyl oxycarbonylation technology is based on a single-step, liquid-phase, cuprous chloride–catalyzed process, which was originally developed by Polymeri/EniChem. Versalis was created as a subsidiary or rename for Polymeri/EniChem. CB&I is the partner in licensing and engineering of contracts. Our evaluation of the technology is based on a single-train plant, producing about 25,000 metric tons per annum (MTPA) of DMC. The chemistry of the process is simple, but small amounts of corrosive by-products are generated that necessitate the use of glass-lined material for certain equipment. The overall
yield of DMC, according to IHS estimates, is 91.9% (based on methanol). Versalis/CB&I primarily produces DMC for the merchandise market.

Ube’s methanol oxycarbonylation technology is based on a two-step (or indirect), gas-phase, palladium–copper chloride–catalyzed process. This process has a somewhat more complex chemistry. In the first-phase, methyl nitrite (MN) is carbonylated producing DMC and nitric oxide (NO) in a fixed-bed reactor. In the second step, NO reacts noncatalytically with oxygen and methanol, producing MN and water. This MN is recycled into the first step. Hence, basically only CO, O₂, and methanol are consumed in the process. Overall yield of DMC is equivalent to 92.5% (based on methanol). Ube’s process, according to IHS estimates, is somewhat costlier than Versalis/CB&I’s process in terms of capital cost. However, the production cost of DMC for the two processes is pretty close, mainly due to the fact that the Ube process produces dimethyl oxalate also as a by-product, which improves the economy of the process. Ube produces DMC primarily to sell it in the merchandise market.

Our third technology analysis is for DMC production by a urea transesterification process using methanol. Since this process is not commercialized yet, a generic-type analysis is presented, based on the data given in the patents of Catalytic Distillation Technologies (CDTECH). The conversion of urea-methanol to DMC is carried out in two steps—first, the urea is converted to methyl carbamate (MC) by reacting with methanol at relatively low temperatures (e.g., 100°C in the presence of a catalyst, or 150°C without catalyst); then, the carbamate is further reacted with methanol at 180–190°C in the presence of a catalyst, producing DMC.
Contents

1. **Introduction** 8

2. **Summary** 10
 - Overview 10
 - Commercial 10
 - Technical 12
 - Technologies 14
 - Versalis/CB&I liquid-phase technology 14
 - Ube gas-phase technology 15
 - Urea methanolysis technology 16
 - Cost estimates 17
 - Process economics scope 17
 - Methanol oxycarbonylation processes (Versalis/CB&I technology versus Ube technology) 18

3. **Market status** 23

4. **Technical review** 28
 - DMC production route alternatives 28
 - Synthesis of DMC by phosgene methanolysis 28
 - Synthesis of DMC by oxidative carbonylation of methanol 29
 - Liquid-phase oxidative carbonylation of methanol 29
 - Gas-phase oxidative carbonylation of methanol (direct method) 29
 - Gas-phase oxidative carbonylation of methanol (indirect method) 31
 - Dimethyl carbonate from transesterification of ethylene carbonate 34
 - Dimethyl carbonate from methanolysis of urea 37

5. **Dimethyl carbonate production by Versalis/CB&I process** 46
 - Process economics scope 46
 - Process description 47
 - Process discussion 52
 - Feedstock 52
 - By-product organic compounds removal 52
 - Process streams 52
 - Materials of construction 53
 - Miscellaneous plant sections 53
 - Cost estimates 55
 - Fixed-capital costs 55
 - Production costs 56

6. **Dimethyl carbonate production by Ube indirect gas-phase process** 60
 - Process economics scope 60
 - Process description 61
 - Process discussion 65
 - Feedstock 65
 - Products separation 66
 - Materials of construction 66
 - Miscellaneous plant sections 66
 - Cost estimates 69
 - Fixed-capital costs 69
 - Production costs 69
7 Dimethyl carbonate production by Catalytic Distillation Technologies

Appendix A—Patent summaries
Appendix B—Design and cost basis
Appendix C—Cited references
Appendix D—Process flow diagrams

Tables

Table 2.1 Global DMC production forecast by global regions (2017–22) 11
Table 2.2 Methanol oxycarbonate technologies—Total capital investment 19
Table 2.3 Methanol oxycarbonate technologies—Production costs 20
Table 2.4 Urea and ethylene oxide transesterification technologies—Total capital investment 21
Table 2.5 Urea and ethylene oxide transesterification technologies—Production costs 22
Table 3.1 Global DMC production forecast by global regions (2017–22) 24
Table 3.2 Global DMC production forecast by application type (2017–22) 25
Table 3.3 Global DMC consumption forecast for different regions of the world (2017–22) 26
Table 4.1 Catalyst metal effect on DMC yield 30
Table 4.2 Effect of catalyst anions on DMC yield 30
Table 4.3 Effect of catalyst support on DMC yield 30
Table 4.4 Effect of copper catalyst promoters on DMC yield 31
Table 4.5 Effect of ratio of the copper catalyst promoters on DMC yield 31
Table 4.6 Performance of zinc/yttrium catalysts in DMC synthesis 37
Table 4.7 Performance of lanthanum catalysts in DMC synthesis 38
Table 4.8 Effect of different catalysts on MC and DMC yields 41
Table 4.9 Performance of solid-base catalysts in DMC synthesis 43
Table 4.10 Effect of catalysts on MC and DMC yields 43
Table 5.1 DMC production by Versalis/CB&I process—Design bases and assumptions 49
Table 5.2 DMC production by Versalis/CB&I process—Main stream flows 49
Table 5.3 DMC production by Versalis/CB&I process—Major equipment 54
Table 5.4 DMC production by Versalis/CB&I process—Utilities summary 55
Table 5.5 DMC production by Versalis/CB&I process—Total capital investment 57
Table 5.6 DMC production by Versalis/CB&I process—Production costs 58
Table 6.1 DMC production by Ube indirect gas-phase process—Design bases and assumptions 63
Table 6.2 DMC production by Ube indirect gas-phase process—Main stream flows 64
Table 6.3 DMC production by Ube indirect gas-phase process—Major equipment 67
Table 6.4 DMC production by Ube indirect gas-phase process—Utilities summary 68
Table 6.5 DMC production by Ube indirect gas-phase process—Total capital investment 70
Table 6.6 DMC production by Ube indirect gas-phase process—Production costs 71
Table 7.1 DMC production by CDTECH—Design bases and assumptions 76
Table 7.2 DMC production by CDTECH—Main stream flows 76
Table 7.3 DMC production waste streams 78
Table 7.4 DMC by CDTECH—Utilities summary 79
Table 7.5 DMC by CDTECH—Major equipment 80
Table 7.6 DMC by CDTECH—Total capital investment 83
Table 7.7 DMC by CDTECH—Production costs 84

Figures

Figure 2.1 World consumption of DMC in 2016 10
Figure 2.2 Global DMC production share forecast by global regions (2017–22) 11
Figure 2.3 Global DMC production share forecast by application type (2017–22) 12
Figure 3.1 World consumption of DMC in 2016 23
Figure 3.2 Global DMC production share forecast by global regions (2017–22) 24
Figure 3.3 Global DMC production share forecast by application type (2017–22) 25
Figure 3.4 Global DMC production share forecast from different processes (2017–22) 26
Figure 3.5 Global DMC consumption share forecast by global regions (2017–22) 27
Figure 3.6 Global DMC consumption share forecast by applications (2017–22) 27
Figure 4.1 Effect of reaction temperature on DMC synthesis 39
Figure 4.2 Effect of reaction time on DMC synthesis 39
Figure 4.3 Effect of reaction temperature on DMC yield in catalytic distillation reactor 44
Figure 4.4 Effect of urea LHSV on DMC yield in catalytic distillation reactor 45
Figure 5.1 DMC production by Versalis/Lummus process 107
Figure 6.1 DMC production by Ube indirect gas-phase process 108
Figure 7.1 DMC production by CDTECH—Section 100 (sheet 1 of 2) 109
Figure 7.1 DMC production by CDTECH—Section 200 (sheet 2 of 2) 110