Abstract

Offshore cryogenic liquefaction to product liquefied natural gas (LNG) offers an attractive means to monetize the stranded gas fields in the deep seas and to stop flaring of associated gas produced along with oil, among other advantages. However, there are potentially many commercial and technical challenges ahead. Expander processes and several of its variations need to be considered for offshore LNG applications.

Expander cycles using nitrogen as the refrigerant have all-gas service and no refrigerant storage, which decrease the plot area requirement, and are more suitable for desirable heat exchanger core arrangements and modularization since most surface area is dedicated to a gas-to-gas service. However, the while the process efficiency is the lowest for the expander process, it is possibly the safest process for the N₂ expander process.

For now, an operational project has yet to prove the technology. There are many aspects of the technology that have yet to be worked out and proven as well, such as the offloading equipment needed to transfer LNG from the floater to LNG carriers.

In this review, the first of its kind, we explore the technologies and economics for production of LNG offshore on a small scale. This review will be useful for those who are considering entry or are currently involved in building projects that will operate from a floating maritime platform for the monetization of stranded gas or shale gas resources offshore.
Contents

1 **Introduction** 6
 Commercial expansion devices 7
 Cooling media 8
 Refrigeration drivers and power generation 8
 Compressor drivers 8

2 **Summary** 10
 Markets 10
 FLNG technology 12
 Process requirements 12
 Hull design and function 14
 Conclusions 17

3 **Industry status** 19
 Introduction 19
 LNG 22
 Gas to liquids 22
 Compressed natural gas (CNG) 23
 Compressed liquefied petroleum gas (LPG) 23
 Global natural gas monetization 23
 Flaring 24
 Stranded gas 25
 LNG liquefaction processes 26
 Drivers of FLNG development 26
 Liquefaction process types 27
 Liquefaction products 27
 Pretreatment of wellhead gas 29
 Comparative compressed power consumption and cooling loads 30
 Comparison of refrigerant systems 30
 Comparison of liquefaction processes 31
 FLNG technology development 32
 Potential locations for FLNG projects 35
 Examples of foreign LNG and FLNG projects 36
 FLNG projects 37
 Conclusion 39

4 **Technology review** 40
 Introduction 40
 FLNG liquefaction technology 40
 Wellhead gas pretreatment 42
 FLNG ship operations 43
 Overall FLNG process description 45
 Nitrogen refrigerant 46
 Overall FLNG processing train 48
 Acid gas removal 49
 Mercury removal 50
 Water removal 51
Table 4.1 Sweet and sour gas 42
Table 4.2 FLNG basic systems 44
Table 4.3 Medium-scale FLNG—Typical main features 45
Table 5.1 Project constructions in progress 58
Table 5.2 Small-scale FLNG—Design bases and assumptions 62
Table 5.3 Small-scale floating LNG (FLNG) 67
Table 5.4 Small-scale floating LNG (FLNG)—Major equipment 74
Table 5.5 Small-scale floating LNG (FLNG)—Utilities summary 77
Table 5.6 Small-scale floating LNG (FLNG)—Total capital investment 79
Table 5.7 Small-scale floating LNG (FLNG)—Capital investment by section 80
Table 5.7a Process unit capital absolutes 82
Table 5.8 Small-scale FLNG—Production costs 82
Table 5.8a Comparative product costs 84
Table 5.9a Process section operating costs 87

Figures

Figure 1.1 Simple refrigeration cycle 7
Figure 3.1 Price of natural gas as a function of oil price 19
Figure 3.2 Relative size of global gas resources 20
Figure 3.3 Distribution of gas fields by size 21
Figure 3.4 Size of gas fields as a function of distance to shore 25
Figure 3.5 FLNG ship components 34
Figure 3.6 Potential locations for worldwide FLNG projects 36
Figure 3.7 Potential LNG and FLNG projects worldwide 36
Figure 4.1 Typical FLNG process scheme 41
Figure 4.2 LNG FPSO systems 43
Figure 4.3 Simplified nitrogen expander process flow schematic 46
Figure 4.4 Detailed PFD for nitrogen dual-expander refrigeration system 47
Figure 4.5 Detailed PFD for nitrogen single-train expander cycle refrigeration system 48
Figure 4.6 Overall simplified dual liquefaction LNG train configuration with electrical power generation 49
Figure 4.7 Mercury removal using regenerable silver-promoted molecular sieves 51
Figure 4.8 FLNG storage containment for LNG 53
Figure 4.9 High-speed submersible LNG cryogenic pump 54
Figure 4.10 Refrigeration system for recovery of LNG boil-off gas 55
Figure 5.1 Process flow diagram—Small-scale floating LNG 103
IHS Customer Care:
Americas: +1 800 IHS CARE (+1 800 447 2273); CustomerCare@ihs.com
Europe, Middle East, and Africa: +44 (0) 1344 328 300; Customer.Support@ihs.com
Asia and the Pacific Rim: +604 291 3600; SupportAPAC@ihs.com