IHS CHEMICAL

Toluene Methylation Process by GT-TolAlkSM Technology

PEP Review 2016-02

March 2016

PEP Review 2016-02
Toluene Methylation Process by GT-TolAlkSM Technology

Anshuman Agrawal
Principal Analyst
PEP Review 2016-02

Toluene Methylation Process by GT-TolAlkSM Technology

Anshuman Agrawal, Principal Analyst

Abstract
Mixed xylenes are the second-most-important aromatic product in terms of world consumption for chemicals manufacture, ranking behind benzene and ahead of toluene. Global demand for xylene isomers has been continuously increasing, with para-xylene leading the way. During 2010–15, consumption of mixed xylenes increased by about 18% (3.4% average annual growth). The high demand for xylene isomers has created incentives for technology researchers to continue advancement work on various aspects and areas of the technologies. Improvements in catalyst performance are one of the prominent features of that work.

Catalyst innovations have significantly improved the processes for on-purpose production of xylenes. Examples of those innovations include processes such as toluene disproportionation, toluene transalkylation, and xylene isomerization. A relatively new commercial development is the toluene alkylation process, in which mixed xylene is produced by reacting toluene and methanol in the presence of a ZSM-5 catalyst.

This review presents a technoeconomic evaluation of the above-mentioned technology, branded as GT-TolAlkSM, which was developed by GTC Technology US, LLC, a US company headquartered in Houston, Texas. The production of mixed xylene using a toluene methylation process is one of the advanced methods developed by GTC via a toluene alkylation route. Sinopec Yangzi Petrochemical (China) has also independently developed and constructed that country’s first toluene methanol alkylation plant, with the capacity to produce 200,000 metric tons per annum (MTPA) of para-xylene. That plant was successfully commissioned in December 2012. GTC won the first global application of toluene alkylation technology for a 280,000 MTPA toluene alkylation unit in China in January 2015.

The technoeconomic evaluation in this review includes estimated capital and production cost estimates, showing the details of important process cost parameters such as battery limits and off-sites costs, variable cost, plant cash cost, plant gate cost, production cost, etc. A brief market overview summarizes the global producing companies, as well as consumption and price details of mixed xylenes.

We prepared this review using information derived from public domain information sources (mainly patents). We also received some data of nonconfidential nature from the licensor (GTC Technology US, LLC) through private communications. Process design was done primarily through Aspen Plus® simulations. Plant and process economics (capex and opex) were worked out using IHS proprietary PEPCOST software, using in places our own design judgments based on operational experience.
Contents

1 Introduction 5
2 Summary 6
3 Industry status 8
 Producing companies 9
 Consumption 11
 Price 12
4 Technology review 13
 Aromatic alkylation technologies 13
 SABIC para-xylene technology 13
 Sinopec Yangzi Petrochemical toluene methanol alkylation 13
 ExxonMobil para-xylene by methylation 13
 Johnson Matthey catalyst contact time 14
 Background of GTC GT-TolAlk SM 14
5 Technology overview 16
 GT-TolAlk SM technology 16
 Catalyst specification 16
 Catalyst cycle length and total life 16
 Chemistry 16
 Process chemistry 16
 Process advantages 17
 Process description 18
 Process discussion 19
6 Cost estimates 24
 Capital cost 24
 Production cost 25
Appendix A—References 31
Appendix B—Process flow diagrams 33

Tables

Table 1 Toluene methylation process by GT-TolAlk SM technology—Production cost 6
Table 2 World supply/demand for mixed xylenes 8
Table 3 Major world producers of mixed xylenes—2015 10
Table 4 World consumption of mixed xylenes by region—2015 11
Table 5 World prices of mixed xylenes 12
Table 6 GT-TolAlk SM technology zeolite-based catalyst composition 16
Table 7 Chemical reaction involved in toluene methylation reactor 17
Table 8 Toluene methylation process by GT-TolAlk SM technology—Design bases and
 assumptions 18
Table 9 Toluene methylation process by GT-TolAlk SM technology—Major stream flows 20
Table 10 Toluene methylation process by GT-TolAlkSM technology—Major equipment 22
Table 11 Toluene methylation process by GT-TolAlkSM technology—Utility summary 23
Table 12 Toluene methylation process by GT-TolAlkSM technology—Total capital investment 25
Table 13 Toluene methylation process by GT-TolAlkSM technology—Production cost 26

Figures

Figure 1 World producers of mixed xylenes—2015 9
Figure 2 World consumption of mixed xylenes—2015 11
Figure 3 SABIC para-xylene block flow diagram 13
Figure 4 Block flow diagram of aromatic complex 14
Figure 5 Block flow diagram of GT-TolAlkSM technology 15
Figure 6 Toluene methylation process by GT-TolAlkSM technology—Effect of plant capacity on investment cost 28
Figure 7 Toluene methylation process by GT-TolAlkSM technology—Effect of net production cost and product value of mixed xylene as a function of toluene feed price 28
Figure 8 Toluene methylation process by GT-TolAlkSM technology—Net production cost and product value of mixed xylene as a function of methanol feed price 29
Figure 9 Toluene methylation process by GT-TolAlkSM technology—Net production cost of mixed xylene as a function of operating level and plant capacity 29
Figure 10 Toluene methylation process by GT-TolAlkSM technology—Product value of mixed xylene as a function of operating level and plant capacity 30
Figure 11 Toluene methylation process by GT-TolAlkSM technology (1 of 2) 34
Figure 12 Toluene methylation process by GT-TolAlkSM technology (2 of 2) 35