PEP Review 2016-03

LNG Process Summary

Gajendra Kumar, Principal Analyst

Abstract

Due to the increasing demand for natural gas in the world today, transportation of natural gas from different parts of the world has become a necessity. Liquefying natural gas provides a safer and cheaper alternative for transportation and also increases its storage capabilities. The liquefaction process requires natural gas to be cooled using various methods of cryogenic processes and also to be depressurized to atmospheric conditions for easier and safer storage.

This process summary reviews the key technology features and presents detailed process economics for the following LNG production processes:

- Large-scale LNG production by propane precooled mixed refrigerant process
- Large-scale LNG production by dual mixed refrigerant process
- Large-scale LNG production by cascade refrigeration process
- Small-scale LNG production by nitrogen refrigeration cycle process
- Small-scale LNG production by single mixed refrigeration cycle process

Given that feedstock prices can fluctuate greatly over time, a traditional process economics snapshot comparison for a particular time and region can often be misleading if applied to investment decisions. For investment purposes, using a historical process economics comparison over a long period of time provides a better basis. To address the impact of feedstock price fluctuations, this process summary includes an iPEPSpectra™ interactive data module that allows for quick comparison of historical process economics of competing technologies in several major regions from 2000 to 2015 on a quarterly basis. The iPEPSpectra™ module uses Microsoft Excel PivotTables and is attached with the electronic version of this process summary. The module provides a powerful interactive tool for comparing process economics at various levels, such as variable costs, plant gate costs, full production costs, and capital costs. An iPEPSpectra™ historical economic comparison provides a more comprehensive assessment of competing technologies and enhances investment decisions.
Contents

1 Executive summary
Introduction
Technology
Gas production and pipeline
Liquefaction
LNG shipping
Regasification
Process
Licensors
Developments in LNG technologies
LNG train size
LNG process drivers and compressors
Environmental challenges
Market overview
Comparison of process economics
Comparison of carbon emissions
Historical economics comparison—An iPEPSpectra™ analysis

2 LNG production processes
Pretreatment
Acid gas removal
Dehydration and mercury removal
Liquefaction
NGL separation
Off-sites
LNG process equipment
Heat exchangers
Compressors
Compressor drivers
Cooling medium
Commercial processes
Single refrigeration cycle
Multiple refrigeration cycle
Self-refrigerated cycle
Cascade processes
Air Products and Chemicals, Inc.
Propane precooled mixed refrigerant (C3MR™) process
Royal Dutch Shell
Shell dual mixed refrigerant (DMR) process
Shell parallel mixed refrigerant (PMR) process
ConocoPhillips
ConocoPhillips Optimized Cascade® process
Axens
Axens-IFP Liquefin™ process
Linde AG
Statoil/Linde MFC® (mixed fluid cascade) process
Single mixed refrigerant (SMR) process 40
Recent developments 43
Key process features comparison 44
3 Process economics 45
Economic basis of comparison 45
Feedstock prices 46
Energy and utility unit prices 46
Unit consumption and variable costs 46
Capital costs 48
Production costs 49
Environmental impacts 51
4 Market overview 53
LNG global supply and demand 53
LNG demand 54
LNG supply 56
LNG regasification capacity 57
LNG producers 58
Natural gas liquefaction capacity 58
5 Historical economics comparison—iPEP Spectra™ analysis 62
Feedstock prices 65
iPEP Spectra™ module flexibility 66
Margins (spreads) 75
6 Detailed process economics 78
7 Cost basis 88
Capital investment 88
Production costs 88
Effect of operating level on production costs 89

Tables
Table 1 LNG technology licensors 11
Table 2 Differences between plate-fin and coil-wound heat exchangers 24
Table 3 Technical specifications of LNG compressors 24
Table 4 Gas turbine performance specifications 25
Table 5 Cooling medium comparison air versus seawater 25
Table 6 Baseload LNG plant key features 26
Table 7 Air Products LNG technologies 29
Table 8 APCI LNG licensing activities 32
Table 9 Shell LNG technologies 33
Table 10 Shell LNG licensing activities 35
Table 11 ConocoPhillips LNG licensing activities 37
Table 12 Linde LNG technologies 39
Table 13 Liquefaction plants—PRICO® process 42
Table 14 Liquefaction plants—Linde processes 43
Table 15 Key process features comparison for large-scale LNG production processes 44
Table 16 Key process features comparison for small-scale LNG production processes 44
Table 17 Feedstock prices 46
Table 18 Variable costs of large-scale LNG production processes in the US Gulf Coast 47
Table 19 Variable costs of small-scale LNG production processes in the US Gulf Coast 48
Table 20 Capital costs of large-scale LNG production processes in the US Gulf Coast 49
Table 21 Capital costs of small-scale LNG production processes in the US Gulf Coast 49
Table 22 Production costs of large-scale LNG production processes in the US Gulf Coast 50
Table 23 Production costs of small-scale LNG production processes in the US Gulf Coast 51
Table 24 Carbon dioxide emissions for large-scale LNG production processes 52
Table 25 Carbon dioxide emissions for small-scale LNG production processes 52
Table 26 Primary energy shares 53
Table 27 Regional demand of LNG 53
Table 28 Regional supply of LNG 54
Table 29 Regional plant utilization 54
Table 30 Top LNG producers—2014 58
Table 31 Liquefaction of natural gas by region—2014 59
Table 32 Detailed economics—Large-scale LNG by propane precooled mixed refrigerant process 78
Table 33 Detailed economics—Large-scale LNG by dual mixed refrigerant process 80
Table 34 Detailed economics—Large-scale LNG by cascade refrigeration cycle process 82
Table 35 Detailed economics—Small-scale LNG by nitrogen refrigeration cycle process 84
Table 36 Detailed economics—Small-scale LNG by single mixed refrigerant process 86

Figures

Figure 1 Natural gas transportation cost 8
Figure 2 LNG value chain 8
Figure 3 Classification of natural gas liquefaction processes 10
Figure 4 Liquefaction capacity by type of technology (2014–20) 12
Figure 5 Global LNG supply and demand 14
Figure 6 Global demand of LNG by region 15
Figure 7 Global supply of LNG by region 15
Figure 8 Global regasification capacity of LNG by region 16
Figure 9 Capital intensity of large-scale LNG production processes 17
Figure 10 Capital intensity of small-scale LNG production processes 17
Figure 11 Production costs of large-scale LNG production processes in the USGC 18
Figure 12 Production costs of small-scale LNG production processes in the USGC 18
Figure 13 Carbon dioxide emissions for large-scale LNG production processes 19
Figure 14 Carbon dioxide emissions for small-scale LNG production processes 19
Figure 15 Large-scale LNG plant cash costs by process in the USGC 20
Figure 16 Typical LNG process block diagram 23
Figure 17 LNG train capacity trend 26
Figure 18 APCI propane precooled mixed refrigerant (C3MR™) process 30
Figure 19 APCI AP-X™ process 31
Figure 20 Shell dual mixed refrigerant process 34
Figure 21 ConocoPhillips Optimized Cascade® process 36
Figure 22 Axens-IFP Liquefin™ process 38
Figure 23 Statoil-Linde MFC® process 40
Figure 24 Single mixed refrigerant process 41
Figure 25 Linde LIMUM®3 process 42
Figure 26 Global demand of LNG by region—2014 57
Figure 27 Global supply of LNG by region—2014 57
Figure 28 Global regasification capacity of LNG by region—2014 58
Figure 29 Global liquefaction capacity forecast by basin 60
Figure 30 Global liquefaction capacity forecast by country 60
Figure 31 Production economics for large-scale LNG production using C3MR™ process at different capacities (USGC) 63
Figure 32 Production economics for large-scale LNG production using DMR process at different capacities (USGC) 63
Figure 33 Production economics for large-scale LNG production using cascade refrigeration process at different capacities (USGC)
Figure 34 Production economics for small-scale LNG production using nitrogen refrigeration process at different capacities (USGC)
Figure 35 Production economics for small-scale LNG production using SMR process at different capacities (USGC)
Figure 36 Natural gas prices by region
Figure 37 Production cost for LNG using C3MR™ process for six geographical locations
Figure 38 Plant cash cost for LNG using C3MR™ process for six geographical locations
Figure 39 Plant cash cost for LNG using DMR process for six geographical locations
Figure 40 Plant cash cost for LNG using cascade refrigeration process for six geographical locations
Figure 41 Plant cash cost for LNG using nitrogen refrigeration process for six geographical locations
Figure 42 Plant cash cost for LNG using SMR process for six geographical locations
Figure 43 Production cost for large-scale LNG processes (USGC)
Figure 44 Production cost for large-scale LNG processes (Canada)
Figure 45 Production cost for large-scale LNG processes (Saudi Arabia)
Figure 46 Production cost for large-scale LNG processes (China)
Figure 47 Production cost for large-scale LNG processes (Russia)
Figure 48 Production cost for large-scale LNG processes (Australia)
Figure 49 Production cost for small-scale LNG processes (China)
Figure 50 Production cost for small-scale LNG processes (USGC)
Figure 51 Production cost for small-scale LNG processes (Russia)
Figure 52 Production cost for small-scale LNG processes (Australia)
Figure 53 Production cost for small-scale LNG processes (Canada)
Figure 54 Production cost for small-scale LNG processes (Saudi Arabia)
Figure 55 Regional large-scale LNG plant margins by C3MR™ process
Figure 56 Regional large-scale LNG plant margins by DMR process
Figure 57 Regional large-scale LNG plant margins by cascade refrigeration process
Figure 58 Regional small-scale LNG plant margins by nitrogen refrigeration process
Figure 59 Regional small-scale LNG plant margins by SMR process