PEP Review 2016-04

ExxonMobil Butyl Rubber Process

Susan Bell, Sr. Principal Analyst
Marianne Asaro, Sr. Principal Analyst

Abstract
Butyl rubber, also known as IIR (isobutylene isoprene rubber), is produced by polymerization of 98 wt% isobutylene (IB) with about 2 wt% isoprene (IP). Halogenated butyl rubbers include BIIR (brominated isobutyl isoprene rubber, bromobutyl rubber) and CIIR (chlorinated isobutyl isoprene rubber). Currently, ExxonMobil and LANXESS are the world’s major producers of butyl rubber and halogenated butyl rubber. Butyl rubber is used mainly for tires, tubes, and tire products.

Butyl rubber is typically produced by the cationic copolymerization of isobutylene with isoprene in the presence of a Friedel-Crafts catalyst at low temperature, around -100°C. Reacting a hexane solution of butyl rubber with elemental bromine or chlorine produces halogenated butyl rubber. In 2009, ExxonMobil announced the development of new breakthrough technology that enables a higher reaction temperature and other improvements for the efficient production of IIR. Based on these advances, ExxonMobil claims significant energy and capital investment savings.

This review examines developments in technology patented by ExxonMobil over the past 15 years for manufacture of IIR at higher temperature than previously possible, with subsequent conversion to BIIR. Recent technology disclosures by ExxonMobil for production of butyl and halobutyl rubbers are reviewed, the industry status of butyl rubber is updated, and process economics are estimated for bromobutyl rubber production. Lastly, an interactive module is included, the iPEP Navigator XOM Butyl Rubber Process tool, which provides a snapshot of the economics for the process and allows the user to select the units and global region of interest.

While the processes presented herein represent the IHS Chemical Process Economics Program’s independent interpretation of ExxonMobil’s patent literature and may not reflect in whole or in part the actual plant configuration, we do believe that they are sufficiently representative of plant conceptual process designs.
Contents

1 Introduction 6
2 Summary 9
3 Industry status 12
 Major producers of butyl elastomers 12
 Price of butyl elastomers 13
 End uses of butyl elastomers 13
4 Developments in manufacture of butyl elastomers—ExxonMobil 14
 Isobutylene/isoprene polymerization chemistry 14
 Initiation 14
 Propagation and termination 15
 High-molecular-weight IIR 15
 Temperature selection and control during IIR synthesis 16
 Viscosity 17
 Film formation, agglomerization, slurry stabilization temperature, and swelling 17
 Operation at higher temperature 17
 Diluent for polymerization 18
 Selection of HFC diluent for IIR process 19
 Initiator/coinitiator system for IIR 23
 Additives to the IIR process 25
 IIR feed preparation 26
 Reactor for producing IIR 26
 Reactor for producing IIR with HFC diluent 27
 Separation of IIR 29
 Separation when using HFC diluent for IIR 30
 Finishing IIR 31
 Halogenation 32
 Halogenation chemistry 32
 Posttreatment, separation, and finishing of BIIR 34
5 Process description 35
 Section 100—Material preparation 44
 Section 200—Polymerization 45
 Section 300—Recycle recovery 45
 Section 400—Halogenation and neutralization 45
 Section 500—Product finishing 46
6 Process discussion 47
 Patent selection 47
 Raw materials 47
 Polymerization reactor residence time and polymer concentration 48
 Polymerization reactor cleaning 48
 Halogenation and neutralization 48
 Refrigeration 49
 Process safety 49
 Materials of construction 49
Tables

Table 1 Comparison of butyl rubber production process based on conventional process and updated process based on ExxonMobil’s patents 10
Table 2 Summary of process economics based on ExxonMobil butyl and bromobutyl technologies 11
Table 3 Major producers of butyl elastomers 12
Table 4 Specifications of some ExxonMobil butyl grades 16
Table 5 Physical properties of diluents 20
Table 6 Performance of 134a and 152a compared to MeCl 22
Table 7 Predicted performance using HFCs for semicontinuous production of butyl rubber in a bayonet CSTR 25
Table 8 Effects of low level oxygenates on film formation and MWD 26
Table 9 Specifications of representative bromobutyl grades 32
Table 10 ExxonMobil bromobutyl rubber process—Design bases 36
Table 11 ExxonMobil bromobutyl rubber process—Stream flows 37
Table 12 ExxonMobil bromobutyl rubber process—Major equipment 41
Table 13 ExxonMobil bromobutyl rubber process—Utilities summary 44
Table 14 Typical isobutylene specifications 47
Table 15 Typical isoprene specifications 48
Table 16 Summary of major waste streams 50
Table 17 ExxonMobil bromobutyl rubber production process—Total capital investment 52
Table 18 ExxonMobil bromobutyl rubber production process—Capital investment by section 53
Table 19 ExxonMobil bromobutyl rubber production process—Production costs 55
Table 20 ExxonMobil butyl rubber production process—Total capital investment 58
Table 21 ExxonMobil butyl rubber production process—Production costs 59
Table 22 Capital cost comparison of conventional butyl rubber process and ExxonMobil new process 61
Table 23 Variable cost comparison of conventional butyl rubber process and ExxonMobil new process 61

Figures

Figure 1 Block flow diagram of conventional process for production of IIR 7
Figure 2 Block flow diagram of conventional process for production of BIIR 8
Figure 3 Consumption of butyl elastomers in major regions—2012 13
Figure 4 Stability temperatures of butyl rubber slurries in HFC/MeCl blends 23
Figure 5 Maximum molecular weight (M_w) achieved versus % conversion 24
Figure 6 Changes to IIR synthesis reactor designs over time 27
Figure 7 Cross-sectional view of a boiling pool reactor 29
Figure 8 Effect of HFC on selectivity of IIR bromination 34
Figure 9 Sensitivity of bromobutyl rubber cost to plant capacity and utilization 57
Figure 10 Bromobutyl rubber production 68
Figure 11 Butyl rubber production 71