IHS CHEMICAL ExxonMobil Butyl Rubber Process

PEP Review 2016-04

March 2016

ihs.com

Susan Bell Sr. Principal Analyst

Marianne Asaro Sr. Principal Analyst

PEP Review 2016-04

ExxonMobil Butyl Rubber Process

Susan Bell, Sr. Principal Analyst Marianne Asaro, Sr. Principal Analyst

Abstract

Butyl rubber, also known as IIR (isobutylene isoprene rubber), is produced by polymerization of 98 wt% isobutylene (IB) with about 2 wt% isoprene (IP). Halogenated butyl rubbers include BIIR (brominated isobutyl isoprene rubber, bromobutyl rubber) and CIIR (chlorinated isobutyl isoprene rubber). Currently, ExxonMobil and LANXESS are the world's major producers of butyl rubber and halogenated butyl rubber. Butyl rubber is used mainly for tires, tubes, and tire products.

Butyl rubber is typically produced by the cationic copolymerization of isobutylene with isoprene in the presence of a Friedel-Crafts catalyst at low temperature, around -100°C. Reacting a hexane solution of butyl rubber with elemental bromine or chlorine produces halogenated butyl rubber. In 2009, ExxonMobil announced the development of new breakthrough technology that enables a higher reaction temperature and other improvements for the efficient production of IIR. Based on these advances, ExxonMobil claims significant energy and capital investment savings.

This review examines developments in technology patented by ExxonMobil over the past 15 years for manufacture of IIR at higher temperature than previously possible, with subsequent conversion to BIIR. Recent technology disclosures by ExxonMobil for production of butyl and halobutyl rubbers are reviewed, the industry status of butyl rubber is updated, and process economics are estimated for bromobutyl rubber production. Lastly, an interactive module is included, the iPEP Navigator XOM Butyl Rubber Process tool, which provides a snapshot of the economics for the process and allows the user to select the units and global region of interest.

While the processes presented herein represent the IHS Chemical Process Economics Program's independent interpretation of ExxonMobil's patent literature and may not reflect in whole or in part the actual plant configuration, we do believe that they are sufficiently representative of plant conceptual process designs.

Contents

1	Introduction	6
2	Summary	9
3	Industry status	12
	Major producers of butyl elastomers	12
	Price of butyl elastomers	13
	End uses of butyl elastomers	13
4	Developments in manufacture of butyl elastomers—ExxonMobil	14
	Isobutylene/isoprene polymerization chemistry	14
	Initiation	14
	Propagation and termination	15
	High-molecular-weight IIR	15
	Temperature selection and control during IIR synthesis	16
	Viscosity	17
	Film formation, agglomerization, slurry stabilization temperature, and swelling	17
	Operation at higher temperature	17
	Diluent for polymerization	18
	Selection of HFC diluent for IIR process	19
	Initiator/coinitiator system for IIR	23
	Additives to the IIR process	25
	IIR feed preparation	26
	Reactor for producing IIR	26
	Reactor for producing IIR with HFC diluent	27
	Separation of IIR	29
	Separation when using HFC diluent for IIR	30
	Finishing IIR	31
	Halogenation	32
	Halogenation chemistry	32
_	Posttreatment, separation, and finishing of BIIR	34
5	Process description	35
	Section 100—Material preparation	44
	Section 200—Polymerization	45
	Section 300—Recycle recovery	45
	Section 400—Halogenation and neutralization	45
	Section 500—Product finishing	46
6	Process discussion	47
	Patent selection	47
	Raw materials	47
	Polymerization reactor residence time and polymer concentration	48
	Polymerization reactor cleaning	48
	Halogenation and neutralization	48
	Refrigeration	49
	Process safety	49
	Materials of construction	49

IHS[™] CHEMICAL

COPYRIGHT NOTICE AND DISCLAIMER © 2016 IHS. For internal use of IHS clients only. No portion of this report may be reproduced, reused, or otherwise distributed in any form without prior written consent, with the exception of any internal client distribution as may be permitted in the license agreement between client and IHS. Content reproduced or redistributed with IHS permission must display IHS legal notices and attributions of authorship. The information contained herein is from sources considered reliable, but its accuracy and completeness are not warranted, nor are the opinions and analyses that are based on it, and to the extent permitted by law, IHS shall not be liable for any errors or omissions or any loss, damage, or expense incurred by reliance on information or any statement contained herein. In particular, please note that no representation or warranty is given as to the achievement or reasonableness of, and no reliance should be placed on, any projections, forecasts, estimates, or assumptions, and, due to various risks and uncertainties, actual events and results may differ materially from forecasts and statements of belief noted herein. This report is not to be construed as legal or financial advice, and use of or reliance on any information in this publication is entirely at client's own risk. IHS and the IHS logo are trademarks of IHS.

Appendix B—Process flow diagrams	
Appendix A—Cited references	
Comparison of conventional process versus ExxonMobil new	process 57
Production costs	54
Capital costs	51
7 Cost estimates	51
Waste treatment	50

Tables

Table 1	Comparison of butyl rubber production process based on conventional process and updated process based on ExxonMobil's patents	10
Table 2	Summary of process economics based on ExxonMobil butyl and bromobutyl	
	technologies	11
Table 3	Major producers of butyl elastomers	12
Table 4	Specifications of some ExxonMobil butyl grades	16
Table 5	Physical properties of diluents	20
Table 6	Performance of 134a and 152a compared to MeCl	22
Table 7	Predicted performance using HFCs for semicontinuous production of butyl rubber in a	
	bayonet CSTR	25
Table 8	Effects of low level oxygenates on film formation and MWD	26
Table 9	Specifications of representative bromobutyl grades	32
Table 10	ExxonMobil bromobutyl rubber process—Design bases	36
Table 11	ExxonMobil bromobutyl rubber process—Stream flows	37
Table 12	ExxonMobil bromobutyl rubber process—Major equipment	41
Table 13	ExxonMobil bromobutyl rubber process—Utilities summary	44
Table 14	Typical isobutylene specifications	47
Table 15	Typical isoprene specifications	48
Table 16	Summary of major waste streams	50
Table 17	ExxonMobil bromobutyl rubber production process—Total capital investment	52
Table 18	ExxonMobil bromobutyl rubber production process—Capital investment by section	53
Table 19	ExxonMobil bromobutyl rubber production process—Production costs	55
Table 20	ExxonMobil butyl rubber production process—Total capital investment	58
Table 21	ExxonMobil butyl rubber production process—Production costs	59
Table 22	Capital cost comparison of conventional butyl rubber process and ExxonMobil new	
	process	61
Table 23	Variable cost comparison of conventional butyl rubber process and ExxonMobil new	
	process	61

Figures

Figure 1	Block flow diagram of conventional process for production of IIR	7
Figure 2	Block flow diagram of conventional process for production of BIIR	8
Figure 3	Consumption of butyl elastomers in major regions—2012	13
Figure 4	Stability temperatures of butyl rubber slurries in HFC/MeCI blends	23
Figure 5	Maximum molecular weight (M _p) achieved versus % conversion	24
Figure 6	Changes to IIR synthesis reactor designs over time	27
Figure 7	Cross-sectional view of a boiling pool reactor	29
Figure 8	Effect of HFC on selectivity of IIR bromination	34
Figure 9	Sensitivity of bromobutyl rubber cost to plant capacity and utilization	57
Figure 10	Bromobutyl rubber production	68
Figure 11	Butyl rubber production	71

IHS Customer Care:

Americas: +1 800 IHS CARE (+1 800 447 2273); CustomerCare@ihs.com Europe, Middle East, and Africa: +44 (0) 1344 328 300; Customer.Support@ihs.com Asia and the Pacific Rim: +604 291 3600; SupportAPAC@ihs.com

