IHS CHEMICAL

Process Summary—Natural Gas Liquids Separation and Recovery

Process Economics Program Review 2016-05

December 2016

ihs.com

Process Summary—Natural Gas Liquids Separation and Recovery

Richard Nielsen Sr. Principal Analyst

PEP Review 2016-05

Process Summary—Natural Gas Liquids Separation and Recovery

Richard Nielsen, Sr. Principal Analyst

Abstract

Natural gas liquids (NGLs) are the C_{2+} liquefied hydrocarbons that are recovered above ground in natural gas field facilities or in gas processing plants. Refineries are a secondary source of some NGLs. The principal NGL products are liquefied petroleum gas, or LPG (a mixture of propane and butane), propane, isobutane, n-butane, ethane, and C_{5+} natural gasoline. Besides the growing demand for these NGLs, some NGLs are also extracted from natural gas in order to be able to market the gas by reducing its dew point to below pipeline specification. Some natural gases contain impurities such as hydrogen sulfide that are removed in treaters prior to NGL separation.

Supply of NGLs has grown considerably in North America with the rapid development and application of shale fracking. Recovery of NGLs has provided additional revenue. The United States has switched from a net importer of NGLs to an exporter. US demand for NGLs has lagged behind supply growth, but will significantly increase when ethane steam crackers now under construction or planned for start-up come online. Excess NGL production will be exported.

Worldwide demand for NGLs totaled 410 million metric tons in 2015, about 93.6% of total production of over 438 million metric tons that year. Demand grew an average of 3.43%/yr over 2010 to 2015 from 364 million metric tons. The 3.22%/yr global growth rate of LPG, the NGL product most in demand, over that period exceeded the growth rate of total petroleum demand (about 1.6%/yr). The largest producing regions are North America (about 31% of total production) and the Middle East (about 30% of total production). These two regions account for about 88% of regional surplus NGLs available for export to importing regions. Europe and the Far East have the largest regional deficits of NGLs, accounting for about 37% each of the total regional deficit.

This PEP Review summarizes the process economics and technology of NGL recovery from treated natural gas. Recovering ethane or rejecting ethane (leaving ethane in the natural gas) is presented for each recovery process. Turboexpansion processes are the most prevalent type of recovery processes. Economics are determined for three types of turboexpander processes—the conventional process, a simplified gas subcooled process, and a simplified recycle split vapor process. Economics of a generic NGL fractionation process used to determine the product value of mixed NGL product of the gas separation are also presented.

This process summary highlights the new iPEPSpectra interactive data module with which our clients can quickly compare historical production economics of competing processes in several major global regions. The interactive module, written as an Excel pivot table, is attached with the electronic version of this review. The module provides a powerful interactive tool to compare production economics at various levels, such as variable cost, cash cost, and full production cost. An iPEPSpectra historical economic comparison provides a more comprehensive way of assessing competing technologies, leading to a more valid investment decision.

1

IHS Chemical | PEP Review 2016-05 Process Summary—Natural Gas Liquids Separation and Recovery

Contents

1	Executive summary	8
	Introduction	8
	Process overview	9
	Technology	10
	Processes	10
	NGL recovery	11
	NGL fractionation	12
	Licensors	12
	Comparison of process economics	13
	Conclusion	16
	Historical economics comparison—An iPEPSpectra™ analysis	17
2	NGL processes	19
	Introduction	19
	Natural gas processing	19
	Natural gas treating	19
	Natural gas separation	21
	Ethane recovery	23
	Ethane rejection	23
	NGL separation processes	24
	Adsorption	39
	Compression	39
	Membrane process	39
	NGL fractionation	39
	Product specifications	41
	Shipping and storage	42
	Environment impact and safety	42
3	Process economics	43
	NGL recovery	43
	Ethane recovery economics	44
	Contracts	45
	Capital costs	46
	Unit consumption and variable costs	47
	Production costs	51
	NGL fractionation	58
	Capital costs	58
	Unit consumption and variable costs	59
	Production costs	64
4	Market overview	71
	Global NGL supply and demand	72
	Supply	73
	Demand	75
	Ethane	75
	Propane	77
	LPG	77
	Supply	78
	Demand	79

IHS™ CHEMICAL

COPYRIGHT NOTE: AND DISCLAIMER @ 2016 IHS. For internal use of IHS clients only. No portion of his report may be reprodueed, reused, or otherwise distributed in any form without prior written consent, with the exception of any internal client distribution as may be permitted in the license agreement between client and IHS. Content reproduced or redistributed with IHS permission must deplay IHS legal notices and attributions of authorship. The information considered reliable, but its accuracy and completenees are not warranted, nor are the opinions and analyses that are based upon it, and to the extent permitted by Iaw, IHS shall not be liable for any errors or omissions or any loss, damage, or expense incurred by reliance on information or any statement contained herein is particular, please note that no represents or warranty is given as to the achievement or reasonableness of, and no reliance should be placed on, any projections, forecasts, estimates, or assumptions, and, due to various risks and uncertainties, actual events and results may differ materially from forecasts and statements delief noted herein. This report is not to be construed as legal or financial advice, and use of or reliance on any information in this publication is entries at clients on wirks. HS and the HS loop are trademants of IHS. DOWNIO2ADEd 30 December 2016 04:36 AMM UTC by Devi Loganathan, IHS (Devi.Loganathan@ihsmarkit.com)

Butanes	80
Natural gasoline	81
End-use markets and demand drivers	81
Ethane	82
Propane	83
LPG	84
Butanes	85
Natural gasoline	86
Price history	87
Ethane	88
Propane	88
LPG	89
Natural gasoline	89
Producers	89
Capacity	90
Fractionators	94
New construction	98
New fractionator plant construction	99
5 Historical economics comparison—An iPEPSpectra™	
Historical NGL prices	100
Historical process economics comparison—iPEPSpectra™	
6 Detailed process economics	105
7 Cost bases	115
Capital investment	115
Production costs	115
Effect of operating level on production costs	116
Appendix A—Cited references	117
Appendix B—Product yields	122

Tables

Table 1.1 Three types of separation processes	11
Table 1.2 Selected commercial NGL recovery processes	13
Table 1.3 Battery limits investment, off-sites investment, and total fixed cost	14
Table 1.4 Comparison of technologies—Return on investment, fourth quarter 2015 price scenario	16
Table 1.5 Comparison of technologies—Return on investment, first quarter 2014 price scenario	16
Table 2.1 Recovery of NGL by process	22
Table 2.2 Plant technology limits of NGL recovery by type of process	23
Table 3.1 Natural gas feedstock compositions	44
Table 3.2 Capital costs of NGL recovery processes	46
Table 3.3 Values of feedstocks, products, and utilities	47
Table 3.4 Variable costs of C ₂ + NGL recovery by process for Rich B feed gas—Low crude oil	47
price case Table 3.5 Variable costs of C ₃ + NGL recovery by process for Rich B feed gas—Low crude oil	47
price case	48
Table 3.6 Variable costs of C ₂ + NGL recovery by process for Rich B feed gas—100 \$/barrel	10
crude oil price case	48
Table 3.7 Variable costs of C ₃ + NGL recovery by process for Rich B feed gas—100 \$/barrel	
crude oil price case	49
Table 3.8 Variable costs of C ₂ + NGL recovery by feed gas using conventional turboexpansion—	
Low crude oil price case	49
Table 3.9 Variable costs of C ₃ + NGL recovery by feed gas using conventional turboexpansion—	
Low crude oil price case	50

Table 3.10 Variable costs of C ₂ + NGL recovery by feed gas using GSP turboexpansion—Low crude oil price case	50
Table 3.11 Variable costs of C ₃ + NGL recovery by feed gas using GSP turboexpansion—Low crude oil price case	50
Table 3.12 Variable costs of C ₂ + NGL recovery by feed gas using RSV turboexpansion—Low crude oil price case	50
Table 3.13 Variable costs of C ₃ + NGL recovery by feed gas using RSV turboexpansion—Low crude oil price case	51
Table 3.14 Production costs of C ₂ + NGL recovery by process for Rich B feed gas—Low crude oil price case	52
Table 3.15 Production costs of C ₃ + NGL recovery by process for Rich B feed gas—Low crude oil price case	52
Table 3.16 Production costs of C ₂ + NGL recovery by process for Rich B feed gas—100 \$/barrel crude oil price case	53
Table 3.17 Production costs of C ₃ + NGL recovery by process for Rich B feed gas—100 \$/barrel crude oil price case	54
Table 3.18 Production costs of C ₂ + NGL recovery by feed gas using conventional turboexpansion—Low crude oil price case	55
Table 3.19 Production costs of C ₃ + NGL recovery by feed gas using conventional turboexpansion—Low crude oil price case	55
Table 3.20 Production costs of C ₂ + NGL recovery by feed gas using GSP turboexpansion—Low crude oil price case	56
Table 3.21 Production costs of C ₃ + NGL recovery by feed gas using GSP turboexpansion—Low crude oil price case	56
Table 3.22 Production costs of C ₂ + NGL recovery by feed gas using RSV turboexpansion—Low crude oil price case	57
Table 3.23 Production costs of C ₃ + NGL recovery by feed gas using RSV turboexpansion—Low crude oil price case	57
Table 3.24 Capital cost of NGL fractionation process	59
Table 3.25 Variable costs of fractionation of Rich B C ₂ + NGL—Low crude oil price case	60
Table 3.26 Variable costs of Rich B C ₃ + NGL fractionation—Low crude oil price case	60
Table 3.27 Variable costs of Rich B C ₂ + NGL fractionation—100 \$/barrel crude oil price case	61
Table 3.28 Variable costs of Rich B C ₃ + NGL fractionation—100 \$/barrel crude oil price case	61
Table 3.29 Variable costs of fractionation of C_2 + NGL by conventional turboexpansion—Low	01
	<u></u>
crude oil price case	62
Table 3.30 Variable costs of fractionation of C ₃ + NGL by conventional turboexpansion—Low	
crude oil price case Table 3.31 Variable costs of fractionation of C ₂ + NGL by GSP turboexpansion—Low crude oil	62
price case	63
Table 3.32 Variable costs of fractionation of C_3 + NGL by GSP turboexpansion—Low crude oil	
price case	63
Table 3.33 Variable costs of fractionation of C ₂ + NGL by RSV turboexpansion—Low crude oil price case	64
Table 3.34 Variable costs of fractionation of C ₃ + NGL by RSV turboexpansion—Low crude oil	04
price case	64
Table 3.35 Production costs of C ₂ + NGL fractionation for Rich B feed gas—Low crude oil price case	65
Table 3.36 Production costs of C ₃ + NGL fractionation for Rich B feed gas—Low crude oil price case	65
Table 3.37 Production costs of C ₂ + NGL fractionation for Rich B feed gas—100 \$/barrel crude oil	
price case Table 3.38 Production costs of C ₃ + NGL fractionation for Rich B feed gas—100 \$/barrel crude oil	66
price case	66
Table 3.39 Production costs of C ₂ + NGL fractionation by conventional turboexpansion—Low crude oil price case	67
Table 3.40 Production costs of C ₃ + NGL fractionation by conventional turboexpansion—Low	
crude oil price case	68

Table 3.41 Production costs of C ₂ + NGL fractionation by GSP turboexpansion—Low crude oil	
price case	68
Table 3.42 Production costs of C ₃ + NGL fractionation by GSP turboexpansion—Low crude oil price case	69
Table 3.43 Production costs of C ₂ + NGL fractionation by RSV turboexpansion—Low crude oil	09
price case	69
Table 3.44 Production costs of C ₃ + NGL fractionation by RSV turboexpansion—Low crude oil	
price case	70
Table 4.1 Air pollutant emissions, lb per billion Btus	71
Table 4.2 Top 10 countries with technically recoverable shale gas reserves	74
Table 4.3 NGL characteristics of North American shale gas and oil fields	74
Table 4.4 Major importers of US ethane Table 4.5 World NGL demand by region—2015	75 75
Table 4.6 US NGL demand (ca 2011)	81
Table 4.7 Major reactions of ethylene, products, and derivatives	82
Table 4.8 World LPG end uses	85
Table 4.9 Estimated fractionation plus transportation costs to market hubs (2012)	88
Table 4.10 Ethane transportation fees to Mont Belvieu, Texas hub (2013)	88
Table 4.11 Regional world NGL supply—2015	90
Table 4.12 United States natural gas processing plants	91
Table 4.13 Canadian natural gas processing plants	93
Table 4.14 Capacity of United States fractionation facilities	95
Table 4.15 Capacity of Canadian fractionation facilities	96
Table 4.16 New gas plant construction	98
Table 4.17 New North American NGL fractionator construction	99
Table 6.1 NGLs by conventional turboexpander process	105
Table 6.2 NGLs by gas subcooled (GSP) turboexpander process	107
Table 6.3 NGLs by recycle split vapor (RSV) turboexpander process Table 6.4 NGL separation by generic fractionation process	109 112
Table 0.4 MOL separation by generic fractionation process	112

Figures

Figure 1.1 Overview of natural gas and NGL processing	10
Figure 1.2 Comparison of technologies—Capital intensity	14
Figure 1.3 Comparison of technologies—Production costs, ethane recovered	15
Figure 1.4 Comparison of technologies—Production costs, ethane rejected	15
Figure 1.5 Margin for ethane recovery compared with rejection for combined conventional	
turboexpander—Fractionation process for feed gases Rich B and Rich C	18
Figure 2.1 General configuration of non-associated natural gas processing	20
Figure 2.2 Acid gas removal processes	21
Figure 2.3 Joule-Thomson process block diagram	25
Figure 2.4 IPOR SM process block diagram	27
Figure 2.5 PRICO-NGL [®] process block diagram	30
Figure 2.6 Conventional turboexpander process block diagram	31
Figure 2.7 Gas subcooled turboexpander process block diagram	32
Figure 2.8 Cold residue recycle process block diagram	33
Figure 2.9 Recycle split vapor process block diagram	34
Figure 2.10 IPSI-1 process block diagram	35
Figure 2.11 IPSI-2 process block diagram	36
Figure 2.12 Generic NGL fractionation process block diagram	40
Figure 3.1 Effect of ethane price on optimal ethane recovery based on gross plant revenue	45
Figure 4.1 NGL supply by region	72
Figure 4.2 Worldwide demand for NGL by region	73
Figure 4.3 World propane supply and demand	77

IHS Chemical | PEP Review 2016-05 Process Summary-Natural Gas Liquids Separation and Recovery

Figure 4.4 World LPG production by source—2015	78
Figure 4.5 World butane supply	80
Figure 4.6 US petrochemical demand for ethane and propane	83
Figure 4.7 World propane uses—2015	83
Figure 4.8 World LPG demand by use—2015	84
Figure 4.9 World butane uses—2015	86
Figure 4.10 US NGL price history	87
Figure 4.11 Natural gas processing plant capacity number distribution	94
Figure 4.12 Natural gas processing plant location capacity volume distribution	94
Figure 4.13 NGL fractionation plant capacity—Number distribution	97
Figure 4.14 NGL fractionation plant capacity—Volume distribution	97
Figure 5.1 Historical NGL component market prices	100
Figure 5.2 Effect of feed gases on margins for ethane recovery by the conventional	
turboexpander combined with the fractionation process	102
Figure 5.3 Effect of turboexpander process type on ethane recovery margins for Rich B feed gas	103
Figure 5.4 Effect of turboexpander process type on ethane rejection margins for Rich B feed gas	103
Figure 5.5 Margin for ethane recovery compared with rejection for combined conventional	
turboexpander—Fractionation process for feed gases Rich B and Rich C	104

IHS Customer Care:

Americas: +1 800 IHS CARE (+1 800 447 2273); CustomerCare@ihs.com Europe, Middle East, and Africa: +44 (0) 1344 328 300; Customer.Support@ihs.com Asia and the Pacific Rim: +604 291 3600; SupportAPAC@ihs.com

