PEP Review 2016-07
Air Separation Unit Update

Dipti Dave
Senior Analyst II

Michael Arné
Senior Principal Analyst
Abstract

Oxygen consumption in the United States is roughly 18.8 billion cubic meters per year and is expected to grow at an average annual rate of 1.5% between 2015 and 2020. In this review, we look at the production of gaseous oxygen by the oldest and most highly developed air separation technology for commercial production of atmospheric gases, cryogenic fractional distillation. A cryogenic unit is commonly described as an air separation unit (ASU).

This review updates the work presented in IHS Chemical (formerly SRI Consulting) Process Economics Program Review 89-3-3, *Options for Procuring Oxygen* by Anthony Pavone (SRI International, January 1991). We present a generic cryogenic air separation design for the production of 2,000 metric tons/day (TPD) of 99.8% purity oxygen product.

We include capital and production costs for the 2,000 TPD of 99.8% purity oxygen product, along with a second case for the same capacity, shown as capital and production costs for 95% purity oxygen product. Lastly, an interactive module is included—the iPEP Navigator for air separation unit process tool, which provides a snapshot of the economics for the process and allows the user to select the units and global region of interest.
Contents

1 Introduction 5
2 Industry status 6
3 Process review 8
 Air separation technologies 8
 Cryogenic distillation 8
 Membrane air separation 9
 Adsorption air separation 9
 ASU technology developments 9
 ASU block flow diagram 9
 Equipment used in cryogenic air separation 11
 Main heat exchanger 11
 Linde double column system 13
 Process description 13
 Section 100—Air separation process 14
 Process discussion 16
 Utilities 18
 Materials of construction 18
 Waste streams 18
 Offsite storage 18
 Cost estimates 18
 Fixed capital costs 19
 Production costs 19

Appendix A—Cited references 25
Appendix B—Process flow diagram 27

Tables

Table 1 Air separation unit activity 7
Table 2 Oxygen consumption for coal gasification to produce different downstream products 7
Table 3 Typical feed air composition 10
Table 4 Boiling points (°F) of primary components of air 11
Table 5 Key properties and constants of air and air separation gases 11
Table 6 Cryogenic air separation process—Design bases and assumptions 14
Table 7 Cryogenic air separation process—Stream flows 15
Table 8 Cryogenic air separation process—Summary of waste streams 15
Table 9 Cryogenic air separation process—Major equipment 16
Table 10 Expander flow impacts O₂ purity, recovery, and power credit 17
Table 11 Summary of power consumption 17
Table 12 Cryogenic air separation process—Total capital investment (case I, O₂ purity 99.8%) 20
Table 13 Cryogenic air separation process—Production costs (case I, O₂ purity 99.8%) 21
Table 14 Cryogenic air separation process—Total capital investment (case II, O₂ purity 95%) 22
Table 15 Cryogenic air separation process—Production costs (case II, O₂ purity 95%) 22
Table 16 Cryogenic air separation process—Production costs (case I and case II comparison) 24
Figures

Figure 1 US oxygen consumption by industry 6
Figure 2 Air separation technology selection chart 8
Figure 3 Block flow diagram—Cryogenic air separation 10
Figure 4 Main heat exchanger fins secured by side bars 12
Figure 5 Main heat exchanger countercurrent flow or warming stream and cooling stream 12
Figure 6 Main heat exchanger assembly manifolds housed in a coldbox 13
Figure 7 Process flow diagram—Cryogenic air separation unit 28