IHS CHEMICAL Acrylic Acid Process Summary

PEP Review 2016-10

December 2016

ihs.com

Dipti Dave Senior Analyst II

PEP Review 2016-10

Acrylic Acid Process Summary

Dipti Dave, Senior Analyst II

Abstract

Acrylic acid is a major building block in the production of many industrial and consumer products. The global market for acrylic acid was approximately 5.4 million metric tons in 2015, with growth forecast at 4.2% annually during 2013–18 [4]. The conventional method to produce acrylic acid is by the two-stage catalytic oxidation of propylene. Most acrylic acid is converted into commodity esters from crude acrylic acid (CAA), generally >97% purity. The most commonly used processes are based on Nippon Shokubai, BASF, BP (Sohio), and Mitsubishi catalysts or technologies.

The focus of this review is five conventional acrylic acid production processes using propylene as a feedstock. Propylene-based acrylic acid production processes covered herein are by BASF, Nippon Shokubai (original and updated), Mitsubishi Chemical, and Lurgi/Nippon Kayaku. The production economics will be presented for ester-grade acrylic acid and glacial-grade acrylic acid, comparing technical features and environmental impacts.

Given that feedstock prices can fluctuate greatly over time, a traditional process economics snapshot comparison for a particular time and region can often be misleading if applied to investment decisions. For investment purposes, using historical process economic comparisons over a long period of time provides a better basis. To address the impact of feedstock price fluctuations, this process summary is accompanied by an iPEPSpectraTM interactive data module that allows for quickly comparing historical process economics of competing technologies in several major regions. The iPEPSpectraTM module uses Microsoft Excel pivot tables and is a powerful interactive tool for comparing process economics at various levels, such as variable costs, plant gate costs, full production costs, and capital costs. An iPEPSpectraTM historical economic snapshot for each process, allowing the user to select and compare the processes, units, and regions of interest. These modules have recently been developed by the IHS Chemical Process Economics Program (PEP), and both are attached to the electronic version of this review.

Contents

1	Executive summary	7
	Technology	7
	Processes	9
	BASE	0
	Nippon Shokubai (including the undated Nippon Shokubai process)	0
	Mitsubishi Chemical	10
	Lurgi/Nippon Kavaku	10
	Licensors	10
	Comparison of process economics	10
	Ester-grade acrylic acid comparisons	11
	Conclusion	13
	Glacial acrylic acid comparisons	13
	Conclusion	16
	Historical economics comparison—An iPEPSpectra™ analysis	16
2	Acrylic acid production processes	18
	Introduction	18
	Chemistry for acrylic acid from propylene	18
	Propylene two-stage oxidation	18
	Product properties	19
	Commerical processes	20
	BASF process	20
	Nippon Shokubai process	21
	Updated Nippon Shokubai process	22
	Mitsubishi process	23
	Lurgi/Nippon Kayaku process	24
	l echnical aspects	25
	Propylene-based acrylic acid production processes	25
2		20
3	Linit consumption and variable cost	29
	Capital costs	29
	Production costs	31
	Environmental impacts	33
4	Market overview	37
	Introduction	37
	Consumption and growth	37
	Grades of acrylic acid	37
	Glacial acrylic acid markets	38
	North America	38
	Western Europe	40
	Asia	40
	Glacial acrylic acid consumption	41
	Growth	43
	Acrylic acid production	43

IHS™ CHEMICAL

COPYRIGHT NOTCE AND DISCLAIMER © 2016 IHS, For internal use of IHS clients only. No portion of this report may be reproduced, reused, or otherwise distributed in any form without prior written consent, with the exception of any internal client distribution as may be permitted in the license agreement between client and IHS. Content reproduced or redistributed with IHS permission must display IHS legal notices and attributions of authorship. The information contained herein is from sources considered reliable, but its accuracy and completeness are not warranted, nor are the opinions and analyses that are based upon it, and to the extent permitted by law, IHS shall not be liable for any errors or omissions or any loss, damage, or expense incurred by reliance on information or any statement contained herein. In particular, please note that no representation or warranty is given as to the achievement or reasonableness of, and no reliance should be placed on, any projections, forecasts, estimates, or assumptions, and, due to various risks and uncertainties, actual events and results may differ materially from forecasts and statements ob belief noted herein. This report is not to be construed as legal or financial advice, and use of or reliance on any information in this publication is entirely at client's own risk. IHS and the IHS logo are trademarks of IHS.

	Process technology	43
	Process licensors and process owners	43
	Producers	45
	New capacity	48
5	Historical economics comparison—An iPEPSpectra™ analysis	50
6	Detailed process economics	62
7	Cost bases	82
	Design conditions	82
(Capital investment	82
	Project construction timing	84
	Available utilities	84
	Production costs	85
	Effect of operating level on production costs	85
Appendix A—Cited references		87

Tables

Table 1.1 Predominant route to acrylic acid	10
Table 2.1 Propylene grades	18
Table 2.2 Physical properties of acrylic acid	20
Table 2.3 Propylene-based acrylic acid production processes	25
Table 3.1 Variable costs of ester-grade acrylic acid production processes	29
Table 3.2 Variable costs of glacial-grade acrylic acid production processes	30
Table 3.3 Capital costs of ester-grade acrylic acid production processes	31
Table 3.4 Capital costs of glacial-grade acrylic acid production processes	31
Table 3.5 Production costs of ester-grade acrylic acid production processes	32
Table 3.6 Production costs of glacial-grade acrylic acid production processes	32
Table 3.7 Environmental impacts of ester-grade acrylic acid production processes	33
Table 3.8 Environmental impacts of glacial-grade acrylic acid production processes	34
Table 3.9 Routes to acrylic acid	35
Table 3.10 Propylene grades	36
Table 4.1 Typical properties of glacial acrylic acid	38
Table 4.2 Routes to acrylic acid	43
Table 4.3 Process licensors/technology owners	44
Table 4.4 Nippon Shokubai acrylic acid process licensors	44
Table 4.5 Acrylic acid capacity by region—December 2014 (thousands of MT)	45
Table 4.6 Leading global producers of acrylic acid—December 2014 (thousands of MT)	46
Table 4.7 Acrylic acid capacity by company and plant location—2014 (thousands of MT)	46
Table 4.8 New announced acrylic acid capacity (thousands of MT)	49
Table 6.1 Ester-grade acrylic acid by the BASF process—Production costs	62
Table 6.2 Ester-grade acrylic acid by acid from propylene oxidation using Nippon Shokubai	
technology—Production costs	64
Table 6.3 Ester-grade acrylic acid by acid by the updated Nippon Shokubai process—Production	
costs	66
Table 6.4 Ester-grade acrylic acid by acid by the Mitsubishi process—Production costs	68
Table 6.5 Ester-grade acrylic acid by acid by the Lurgi/Nippon Kayaku process—Production costs	70
Table 6.6 Glacial-grade acrylic acid by the BASF process—Production costs	72
Table 6.7 Glacial-grade acrylic acid by the Nippon Shokubai process—Production costs	74
Table 6.8 Glacial-grade acrylic acid by the updated Nippon Shokubai process—Production costs	76
Table 6.9 Glacial-grade acrylic acid by the Mitsubishi process—Production costs	78
Table 6.10 Glacial-grade acrylic acid by the Lurgi/Nippon Kayaku process—Production costs	80

Figures

Figure 1.1 Acrylic acid value chain	7
Figure 1.2 Block flow diagram of acrylic acid production by a two-stage propylene oxidation	
process	8
Figure 1.3 Comparison of ester-grade acrylic acid technologies—Capital intensity	11
Figure 1.4 Comparison of ester-grade acrylic acid technologies—Total fixed capital	11
Figure 1.5 Comparison of ester-grade acrylic acid technologies—Production costs	12
Figure 1.6 Comparison of ester-grade acrylic acid technologies—Based on carbon emissions	12
Figure 1.7 Comparison of ester-grade acrylic acid technologies—Based on water requirement	13
Figure 1.8 Comparison of glacial-grade acrylic acid technologies—Capital intensity	14
Figure 1.9 Comparison of glacial-grade acrylic acid technologies—Total fixed capital	14
Figure 1.10 Comparison of glacial-grade acrylic acid technologies—Production costs	15
Figure 1.11 Comparison of glacial-grade acrylic acid technologies—Based on carbon emissions	15
Figure 1.12 Comparison of glacial-grade acrylic acid technologies—Based on water requirement	16
Figure 1.13 Margin for acrylic acid produced by BASE process in four regions	17
Figure 2.1 Simplified flow diagram of BASE two-stage oxidation process—Acrylic acid from	0.1
	21
Figure 2.2 Simplified flow diagram of Nippon Shokubai two-stage oxidation process to produce	00
Crylic acid	22
Figure 2.3 Simplified flow diagram of updated Nippon Shokubal two-stage oxidation process—	22
Acrylic acid from propylene Figure 2.4 Simplified flow diagram of Mitaubiabi Chamical two store evidation process. Acrylic	23
rigure 2.4 Simplified now diagram of Mitsubishi Chemical two-stage oxidation process—Acrylic	24
Figure 2.5 Simplified flow diagram of Lurgi/Nippon Kayaku two-stage oxidation process—Acrylic	24
acid with liquid-liquid extraction	25
Figure 2.6 Sulzer Chemtech acrylic acid falling film crystallizer	23
Figure 2.7 Three-stage dynamic and static crystallization for acrylic acid—Sulzer Chemtech	21
technology	28
Figure 4.1 Glacial acrylic acid supply and demand—North America	39
Figure 4.2 Glacial acrylic acid cash cost and market price—North America	39
Figure 4.3 Glacial acrylic acid supply and demand—Western Europe	40
Figure 4.4 Glacial acrylic acid supply and demand—China	41
Figure 4.5 Glacial acrylic acid supply and demand—Japan	41
Figure 4.6 Glacial acrylic acid consumption—United States	42
Figure 4.7 Glacial acrylic acid consumption—China	42
Figure 5.1 Historical propylene prices	50
Figure 5.2 Plant cash cost for acrylic acid by BASF process in four regions	51
Figure 5.3 Plant cash cost for acrylic acid by Nippon Shokubai process in four regions	51
Figure 5.4 Plant cash cost for acrylic acid by updated Nippon Shokubai process in four regions	52
Figure 5.5 Plant cash cost for acrylic acid by Mitsubishi process in four regions	52
Figure 5.6 Plant cash cost for acrylic acid by Lurgi/Nippon Shokubai process in four regions	53
Figure 5.7 Comparison of plant cash cost for acrylic acid processes based in China	53
Figure 5.8 Comparison of plant cash cost for acrylic acid processes based in Germany	54
Figure 5.9 Comparison of plant cash cost for acrylic acid processes based in Japan	54
Figure 5.10 Comparison of plant cash cost for acrylic acid processes based in USGC	55
Figure 5.11 Margin for acrylic acid produced by BASF process in four regions	55
Figure 5.12 Margin for acrylic acid produced by Nippon Shokubai process in four regions	56
Figure 5.13 Margin for acrylic acid produced by updated Nippon Shokubai process in four regions	56
Figure 5.14 Margin for acrylic acid produced by Mitsubishi process in four regions	57
Figure 5.15 Margin for acrylic acid produced by Lurgi/Nippon Kayaku process in four regions	57
Figure 5.16 Comparison of plant cash cost for glacial acrylic acid processes based in USGC	58
Figure 5.17 Comparison of plant cash cost for glacial acrylic acid processes based in China	58
Figure 5.18 Comparison of plant cash cost for glacial acrylic acid processes based in Germany	59
Figure 5.19 Comparison of plant cash cost for glacial acrylic acid processes based in Japan	59

4

IHS Chemical | PEP Review 2016-10 Acrylic Acid Process Summary

Figure 5.20 Margin for glacial acrylic acid processes based in USCG	60
Figure 5.21 Margin for glacial acrylic acid processes based in China	60
Figure 5.22 Margin for glacial acrylic acid processes based in Germany	61
Figure 5.23 Margin for glacial acrylic acid processes based in Japan	61

IHS Customer Care:

Americas: +1 800 IHS CARE (+1 800 447 2273); CustomerCare@ihs.com Europe, Middle East, and Africa: +44 (0) 1344 328 300; Customer.Support@ihs.com Asia and the Pacific Rim: +604 291 3600; SupportAPAC@ihs.com

