Acrylic Acid Process Summary

PEP Review 2016-10

Dipti Dave
Senior Analyst II
Abstract

Acrylic acid is a major building block in the production of many industrial and consumer products. The global market for acrylic acid was approximately 5.4 million metric tons in 2015, with growth forecast at 4.2% annually during 2013–18 [4]. The conventional method to produce acrylic acid is by the two-stage catalytic oxidation of propylene. Most acrylic acid is converted into commodity esters from crude acrylic acid (CAA), generally >97% purity. The most commonly used processes are based on Nippon Shokubai, BASF, BP (Sohio), and Mitsubishi catalysts or technologies.

The focus of this review is five conventional acrylic acid production processes using propylene as a feedstock. Propylene-based acrylic acid production processes covered herein are by BASF, Nippon Shokubai (original and updated), Mitsubishi Chemical, and Lurgi/Nippon Kayaku. The production economics will be presented for ester-grade acrylic acid and glacial-grade acrylic acid, comparing technical features and environmental impacts.

Given that feedstock prices can fluctuate greatly over time, a traditional process economics snapshot comparison for a particular time and region can often be misleading if applied to investment decisions. For investment purposes, using historical process economic comparisons over a long period of time provides a better basis. To address the impact of feedstock price fluctuations, this process summary is accompanied by an iPEPSpectra™ interactive data module that allows for quickly comparing historical process economics of competing technologies in several major regions. The iPEPSpectra™ module uses Microsoft Excel pivot tables and is a powerful interactive tool for comparing process economics at various levels, such as variable costs, plant gate costs, full production costs, and capital costs. An iPEPSpectra™ historical economic comparison provides a more comprehensive assessment of competing technologies and enhances investment decisions. Also included is an iPEP Navigator interactive module, which provides an economic snapshot for each process, allowing the user to select and compare the processes, units, and regions of interest. These modules have recently been developed by the IHS Chemical Process Economics Program (PEP), and both are attached to the electronic version of this review.
Contents

1 Executive summary 7
 Introduction 7
 Technology 7
 Processes 9
 BASF 9
 Nippon Shokubai (including the updated Nippon Shokubai process) 9
 Mitsubishi Chemical 10
 Lurgi/Nippon Kayaku 10
 Licensors 10
 Comparison of process economics 10
 Ester-grade acrylic acid comparisons 11
 Conclusion 13
 Glacial acrylic acid comparisons 13
 Conclusion 16
 Historical economics comparison—An iPEPSpectra™ analysis 16

2 Acrylic acid production processes 18
 Introduction 18
 Chemistry for acrylic acid from propylene 18
 Propylene two-stage oxidation 18
 Product properties 19
 Commercial processes 20
 BASF process 20
 Nippon Shokubai process 21
 Updated Nippon Shokubai process 22
 Mitsubishi process 23
 Lurgi/Nippon Kayaku process 24
 Technical aspects 25
 Propylene-based acrylic acid production processes 25
 Technical features 26

3 Process economics 29
 Unit consumption and variable cost 29
 Capital costs 30
 Production costs 31
 Environmental impacts 33

4 Market overview 37
 Introduction 37
 Consumption and growth 37
 Grades of acrylic acid 37
 Glacial acrylic acid markets 38
 North America 38
 Western Europe 40
 Asia 40
 Glacial acrylic acid consumption 41
 Growth 43
 Acrylic acid production 43

IHS™ CHEMICAL
COPYRIGHT NOTICE AND DISCLAIMER © 2016 IHS. For internal use of IHS clients only.
No portion of this report may be reproduced, reused, or otherwise distributed in any form without prior written consent, with the exception of any internal client distribution as may be permitted in the license agreement between client and IHS. Content reproduced or redistributed with IHS permission must display IHS legal notices and attributions of authorship. The information contained herein is from sources considered reliable, but its accuracy and completeness are not warranted, nor are the opinions and analyses that are based upon it, and to the extent permitted by law, IHS shall not be liable for any errors or omissions or any loss, damage, or expense incurred by reliance on information or any statement contained herein. In particular, please note that no representation or warranty is given as to the achievement or reasonableness of, and no reliance should be placed on, any projections, forecasts, estimates, or assumptions, and, due to various risks and uncertainties, actual events and results may differ materially from forecasts and statements of belief noted herein. This report is not to be construed as legal or financial advice, and use of or reliance on any information in this publication is entirely at client's own risk. IHS and the IHS logo are trademarks of IHS.
IHS Chemical | PEP Review 2016-10 Acrylic Acid Process Summary

- Process technology
- Process licensors and process owners
- Producers
- New capacity

5 Historical economics comparison—An iPEPSpectra™ analysis
6 Detailed process economics
7 Cost bases

- Design conditions
- Capital investment
- Project construction timing
- Available utilities
- Production costs
- Effect of operating level on production costs

Appendix A—Cited references

Tables

Table 1.1 Predominant route to acrylic acid
Table 2.1 Propylene grades
Table 2.2 Physical properties of acrylic acid
Table 2.3 Propylene-based acrylic acid production processes
Table 3.1 Variable costs of ester-grade acrylic acid production processes
Table 3.2 Variable costs of glacial-grade acrylic acid production processes
Table 3.3 Capital costs of ester-grade acrylic acid production processes
Table 3.4 Capital costs of glacial-grade acrylic acid production processes
Table 3.5 Production costs of ester-grade acrylic acid production processes
Table 3.6 Production costs of glacial-grade acrylic acid production processes
Table 3.7 Environmental impacts of ester-grade acrylic acid production processes
Table 3.8 Environmental impacts of glacial-grade acrylic acid production processes
Table 3.9 Routes to acrylic acid
Table 3.10 Propylene grades
Table 4.1 Typical properties of glacial acrylic acid
Table 4.2 Routes to acrylic acid
Table 4.3 Process licensors/technology owners
Table 4.4 Nippon Shokubai acrylic acid process licensors
Table 4.5 Acrylic acid capacity by region—December 2014 (thousands of MT)
Table 4.6 Leading global producers of acrylic acid—December 2014 (thousands of MT)
Table 4.7 Acrylic acid capacity by company and plant location—2014 (thousands of MT)
Table 4.8 New announced acrylic acid capacity (thousands of MT)
Table 4.9 Ester-grade acrylic acid by the BASF process—Production costs
Table 4.10 Ester-grade acrylic acid by the Mitsubishi process—Production costs
Table 4.11 Ester-grade acrylic acid by the Lurgi/Nippon Kayaku process—Production costs
Table 4.12 Glacial-grade acrylic acid by the BASF process—Production costs
Table 4.13 Glacial-grade acrylic acid by the updated Nippon Shokubai process—Production costs
Table 4.14 Glacial-grade acrylic acid by the Mitsubishi process—Production costs
Table 4.15 Glacial-grade acrylic acid by the Nippon Shokubai process—Production costs
Table 4.16 Glacial-grade acrylic acid by the Lurgi/Nippon Kayaku process—Production costs
Table 4.17 Glacial-grade acrylic acid by the updated Nippon Shokubai process—Production costs
Table 4.18 Glacial-grade acrylic acid by the Mitsubishi process—Production costs

© 2016 IHS

Downloaded 13 December 2016 07:35 AM UTC by Ellen Blue, IHS INC (Ellen.Blue@ihsmarkit.com)
Figures

Figure 1.1 Acrylic acid value chain
Figure 1.2 Block flow diagram of acrylic acid production by a two-stage propylene oxidation process
Figure 1.3 Comparison of ester-grade acrylic acid technologies—Capital intensity
Figure 1.4 Comparison of ester-grade acrylic acid technologies—Total fixed capital
Figure 1.5 Comparison of ester-grade acrylic acid technologies—Production costs
Figure 1.6 Comparison of ester-grade acrylic acid technologies—Based on carbon emissions
Figure 1.7 Comparison of ester-grade acrylic acid technologies—Based on water requirement
Figure 1.8 Comparison of glacial-grade acrylic acid technologies—Capital intensity
Figure 1.9 Comparison of glacial-grade acrylic acid technologies—Total fixed capital
Figure 1.10 Comparison of glacial-grade acrylic acid technologies—Production costs
Figure 1.11 Comparison of glacial-grade acrylic acid technologies—Based on carbon emissions
Figure 1.12 Comparison of glacial-grade acrylic acid technologies—Based on water requirement
Figure 1.13 Margin for acrylic acid produced by BASF process in four regions
Figure 2.1 Simplified flow diagram of BASF two-stage oxidation process—Acrylic acid from propylene
Figure 2.2 Simplified flow diagram of Nippon Shokubai two-stage oxidation process to produce acrylic acid
Figure 2.3 Simplified flow diagram of updated Nippon Shokubai two-stage oxidation process—Acrylic acid from propylene
Figure 2.4 Simplified flow diagram of Mitsubishi Chemical two-stage oxidation process—Acrylic acid with azeotropic distillation
Figure 2.5 Simplified flow diagram of Lurgi/Nippon Kayaku two-stage oxidation process—Acrylic acid with liquid-liquid extraction
Figure 2.6 Sulzer Chemtech acrylic acid falling film crystallizer
Figure 2.7 Three-stage dynamic and static crystallization for acrylic acid—Sulzer Chemtech technology
Figure 4.1 Glacial acrylic acid supply and demand—North America
Figure 4.2 Glacial acrylic acid cash cost and market price—North America
Figure 4.3 Glacial acrylic acid supply and demand—Western Europe
Figure 4.4 Glacial acrylic acid supply and demand—China
Figure 4.5 Glacial acrylic acid supply and demand—Japan
Figure 4.6 Glacial acrylic acid consumption—United States
Figure 4.7 Glacial acrylic acid consumption—China
Figure 5.1 Historical propylene prices
Figure 5.2 Plant cash cost for acrylic acid by BASF process in four regions
Figure 5.3 Plant cash cost for acrylic acid by Nippon Shokubai process in four regions
Figure 5.4 Plant cash cost for acrylic acid by updated Nippon Shokubai process in four regions
Figure 5.5 Plant cash cost for acrylic acid by Mitsubishi process in four regions
Figure 5.6 Plant cash cost for acrylic acid by Lurgi/Nippon Shokubai process in four regions
Figure 5.7 Comparison of plant cash cost for acrylic acid processes based in China
Figure 5.8 Comparison of plant cash cost for acrylic acid processes based in Germany
Figure 5.9 Comparison of plant cash cost for acrylic acid processes based in Japan
Figure 5.10 Comparison of plant cash cost for acrylic acid processes based in USGC
Figure 5.11 Margin for acrylic acid produced by BASF process in four regions
Figure 5.12 Margin for acrylic acid produced by Nippon Shokubai process in four regions
Figure 5.13 Margin for acrylic acid produced by updated Nippon Shokubai process in four regions
Figure 5.14 Margin for acrylic acid produced by Mitsubishi process in four regions
Figure 5.15 Margin for acrylic acid produced by Lurgi/Nippon Kayaku process in four regions
Figure 5.16 Comparison of plant cash cost for glacial acrylic acid processes based in USGC
Figure 5.17 Comparison of plant cash cost for glacial acrylic acid processes based in China
Figure 5.18 Comparison of plant cash cost for glacial acrylic acid processes based in Germany
Figure 5.19 Comparison of plant cash cost for glacial acrylic acid processes based in Japan
Figure 5.20 Margin for glacial acrylic acid processes based in USCG 60
Figure 5.21 Margin for glacial acrylic acid processes based in China 60
Figure 5.22 Margin for glacial acrylic acid processes based in Germany 61
Figure 5.23 Margin for glacial acrylic acid processes based in Japan 61