Abstract

Propylene is one of the largest volume petrochemicals, with a current worldwide production capacity of around 120 million metric tons for polymer and chemical grades. The industry is somewhat unique considering that most propylene is manufactured as a by-product from either steam cracking or refining operations. Propylene was produced almost exclusively as a by-product until 10–15 years ago. The supply landscape has changed considerably since then, with on-purpose propylene production technologies now responsible for roughly 20% of global supply. The rapid build in on-purpose propylene capacity has largely been driven by slower growth in supply from steam cracking coupled with continued strong demand.

This process summary reviews the key technology features and presents detailed process economics for the principal routes to produce propylene, including both by-product and on-purpose technologies. The following propylene technologies are included:

- Propylene from wide-range naphtha, max. propylene, front-end depropanizer with gas turbine driver
- Propylene, polymer-grade from refinery-grade propylene
- Propylene from propane by the CB&I/Lummus CATOFIN® process
- Propylene from propane by the UOP Oleflex™ process
- Propylene from propane by the Uhde STAR® process
- Coal-to-propylene process by Siemens gasifier
- Lignite-to-propylene process by Shell gasifier
- Methanol-to-propylene by the Lurgi MTP™ process
- Propylene production by the JGC/MCC DTP™ process
- Propylene from ethylene via dimerization and CB&I/Lummus Olefins Conversion Technology (OCT)
- Propylene from the KBR Superflex™ process

Given that feedstock prices can fluctuate greatly over time, a traditional process economics snapshot comparison for a particular time and region can often be misleading if applied to investment decisions. For investment purposes, using historical process economic comparisons over a long period of time provides a better basis. To address the impact of feedstock price fluctuations, this process summary is accompanied by an iPEPSpectra™ interactive data module that allows for quickly comparing historical process economics of competing technologies in several major regions. The iPEPSpectra™ module uses Microsoft Excel pivot tables and is a powerful interactive tool for comparing process economics at various levels, such as variable costs, plant gate costs, full production costs, and capital costs. An iPEPSpectra™ historical economic comparison provides a more comprehensive assessment of competing technologies and enhances investment decisions.
Contents

1 Executive summary 6
 Technology and licensors 7
 Steam cracking 7
 Refinery propylene purification 7
 Propane dehydrogenation 8
 Metathesis 8
 Fluid catalytic cracking 9
 Coal gasification 11
 Methanol-to-propylene 12
 Process economics comparison 13
 Carbon and water emissions comparison 15
 Historical economics comparison 17

2 Market overview 19
 Supply 19
 Demand 20
 Trade 21
 Strategic Issues 22

3 Technology overview 26
 Steam cracking 26
 Chemistry 26
 Reaction initiation 26
 Reaction propagation 27
 Reaction termination 28
 Process description 29
 Pyrolysis and quench 30
 Compression, drying, and depropanizer 31
 Subcooling and separation 31
 Product separation 32
 Refrigeration 32
 Steam distribution 32
 Refinery propylene purification 33
 Process description 34
 Propane dehydrogenation 35
 Chemistry 35
 Catalysts 36
 Commercial processes 37
 CB&I/Lummus CATOFIN® 37
 UOP Oleflex™ 39
 Uhde STAR® (STeam Active Reforming) process 40
 Metathesis 42
 Chemistry 42
 Catalysts 43
 Commercial processes 43
 CB&I/Lummus OCT 43
 Fluid catalytic cracking 44
4 Process economics comparison

5 Historical economics comparison

6 Detailed process economics

Appendix A—Cited references

Appendix B—Cost basis

Tables

Table 1.1 Key process parameters for commercial PDH technologies
Table 1.2 Key process parameters for CB&I/Lummus OCT coupled with ethylene dimerization
Table 1.3 Key process parameters for the Superflex™ process
Table 1.4 Key characteristics of several major gasification technologies
Table 1.5 Key process parameters for commercial MTP technologies
Table 1.6 CO₂ emissions and water consumption for propylene production processes (ton/ton propylene)
Table 3.1 Main characteristics of gasifiers
Table 4.1 Capital costs by technology in the US Gulf Coast—Second quarter 2016
Table 4.2 Production costs by technology in the US Gulf Coast—Second quarter 2016
Table 6.1 Detailed economics—Propylene from wide-range naphtha with front-end depropanizer
Table 6.2 Detailed economics—Propylene, polymer-grade from refinery-grade propylene
Table 6.3 Detailed economics—Propylene from propane by the CATOFIN® process
Table 6.4 Detailed economics—Propylene from propane by the Oleflex™ process
Table 6.5 Detailed economics—Propylene from propane by the Uhde STAR® process
Table 6.6 Detailed economics—Coal-to-propylene process by Siemens gasifier
Table 6.7 Detailed economics—Lignite-to-propylene process by Shell gasifier
Table 6.8 Detailed economics—Methanol-to-propylene by the Lurgi MTP™ process
Table 6.9 Detailed economics—Propylene production by the JGC/MCC DTP™ process
Table 6.10 Detailed economics—Propylene from ethylene via dimerization and OCT
Table 6.11 Detailed economics—Propylene from Superflex™ process

Figures

Figure 1.1 Capital costs by technology in the US Gulf Coast—Second quarter 2016
Figure 1.2 Production costs by technology in the US Gulf Coast—Second quarter 2016
Figure 1.3 Carbon dioxide emissions for propylene production processes
Figure 1.4 Water requirement for propylene production processes
Figure 1.5 Historical production costs for selected technologies in the US Gulf Coast
Figure 2.1 World PG/CG propylene production by technology
Figure 2.2 World PG/CG propylene demand
Figure 2.3 Regional PG/CG propylene net trade
Figure 3.1 Block flow diagram—Propylene from wide-range naphtha with front-end depropanizer
Figure 3.2 General refinery process flow
Figure 3.3 Block flow diagram—Propylene, polymer-grade from refinery-grade propylene
Figure 3.4 Block flow diagram—Propylene from propane by the CATOFIN® process
Figure 3.5 Block flow diagram—Propylene from propane by the Oleflex™ process
Figure 3.6 Block flow diagram—Propylene from propane by the Uhde STAR® process
Figure 3.7 Block flow diagram—Propylene from ethylene via dimerization and OCT
Figure 3.8 Block flow diagram—Propylene from Superflex™ process
Figure 3.9 Block flow diagram—Lignite-to-propylene process by Shell gasifier
Figure 3.10 Block flow diagram—Coal-to-propylene process by Siemens gasifier
Figure 3.11 Block flow diagram—Methanol-to-propylene by the Lurgi MTP™ process
Figure 3.12 Block flow diagram—Propylene production by the JGC/MCC DTP™ process
Figure 4.1 Capital costs by technology in the US Gulf Coast—Second quarter 2016
Figure 4.2 Production costs by technology in the US Gulf Coast—Second quarter 2016
Figure 4.3 Production costs by technology in China—Second quarter 2016
Figure 5.1 Polymer-grade propylene prices by region
Figure 5.2 Refinery-grade propylene prices by region
Figure 5.3 P/E price ratio by region
Figure 5.4 Ethylene prices by region
Figure 5.5 Naphtha prices by region
Figure 5.6 Coal prices by region
Figure 5.7 Methanol prices by region
Figure 5.8 Propane prices by region
Figure 5.9 Production costs for selected technologies in the US Gulf Coast
Figure 5.10 Production costs for selected technologies in Germany
Figure 5.11 Production costs for selected technologies in China
Figure 5.12 Regional production costs—Propylene from wide-range naphtha steam cracking
Figure 5.13 Regional production costs—Propylene, polymer-grade from refinery-grade propylene
Figure 5.14 Regional production costs—Propylene from propane by the Oleflex™ process
Figure 5.15 Regional production costs—Coal-to-propylene process by Siemens gasifier
Figure 5.16 Regional production costs—Methanol-to-propylene by the Lurgi MTP™ process
Figure 5.17 Regional production costs—Propylene from ethylene via dimerization and OCT