Chlor-Alkali Process Summary

PEP Review 2016-12
Chlor-Alkali Process Summary

Ron Smith
Sr. Principal Analyst
PEP Review 2016-12

Chlor-Alkali Process Summary

Ron Smith, Sr. Principal Analyst

Abstract

In this process summary, we review current chlor-alkali production processes and present key features and production economics of four competing processes: (1) mercury cell, (2) diaphragm cell, (3) membrane cell, and (4) membrane cell with oxygen depolarized cathode (ODC), in four major global regions. The process economics include estimated capital costs, variable costs, direct costs, plant cash costs, and full production costs in second quarter 2016 (snapshot economics). We also present carbon footprint and water consumption comparison data for the four competing processes. A brief market overview summarizes the global supply and demand and end-use markets and demand drivers. The status of chlor-alkali process licensors and their offerings are also discussed.

The second quarter 2016 snapshot economics are obtained by using unit price of raw materials, by-products, utilities, labor, and construction cost at the time. To take into account of the fluctuation of prices, this review highlights a new iPEP Spectra™ cost module, developed by the IHS Chemical Process Economics Program (PEP), in which production economics are presented in a time series from 2000 to second quarter 2016, quarterly. The iPEP Spectra™ data module is written in Microsoft Excel pivot tables, which provides a powerful interactive tool to allow our clients maximum flexibility in selecting competing technology and production location and comparing production cost at various levels, such as variable costs, cash costs, or full production costs, as well as margins. The cost module is attached with this process summary on the PEP website. An iPEP Spectra™ historical economics comparison provides a more comprehensive way to compare economics of competing technologies over a long period of time, leading to a more valid investment decision.
Contents

1 Executive summary 4
2 Introduction 5
 Technology 7
 Processes 8
 Process economics comparison 9
 Production costs 10
 Comparison of carbon emissions 10
 Comparison of water consumption 12
 Historical economics comparison—iPEP Spectra™ analysis 13
 Cash costs for production of chlorine by four competing technologies in the US Gulf Coast 13
 Cash costs for production of chlorine by membrane cell technology in four world regions 14
3 Market overview 15
 Chlorine 16
 Caustic soda 18
4 Chlor-alkali production processes 24
 Process chemistry 24
 Commercial processes 25
 Chlorine (caustic soda by-product) by electrolysis of NaCl in mercury cells 26
 Chlorine (caustic soda by-product) by electrolysis of NaCl in diaphragm cells 27
 Chlorine (caustic soda by-product) by electrolysis of NaCl in membrane cells 28
 Chlorine (caustic soda by-product) by electrolysis of NaCl in membrane cells with oxygen depolarized cathodes (ODCs) 30
 Comparison of key features 31
 Cell room 32
 Cooling and drying 32
 Chlorine compression and liquefaction 32
 Storage and loading 32
 Caustic handling, evaporation, storage, and loading 32
 Hydrogen handling 33
5 Process economics 35
 Unit consumptions and variable costs 35
 Capital costs 35
6 Historical economics comparison—An iPEP Spectra™ analysis 38
 Historical prices 38
 Chlorine 38
 Caustic soda (dry basis) 39
 Rock salt 40
 Electricity 41
 Plant cash costs by region 42
7 Detailed process economics 48
8 Cost basis 56
 Capital investment 56
 Production costs 56
 Effect of operating level on production costs 57
Appendix A—Cited references 58
Tables

Table 1 World top producers of chlorine 22
Table 2 Comparison of three main electrolytic technology capex and opex economic characteristics 33
Table 3 Basic comparison of detailed energy use for conventional chlor-alkali technologies 33
Table 4 Variable costs of chlorine (caustic soda by-product) by electrolysis of NaCl 35
Table 5 Capital costs for worldscale chlorine (and caustic) production processes 36
Table 6 Summary of updated replacement cost economic attributes of four types of worldscale chlorine plants at full capacity 36
Table 7 Mercury cell versus ODC technology economics 37
Table 8 Chlorine (caustic soda by-product) production costs by electrolysis of NaCl in mercury cells 48
Table 9 Chlorine (caustic soda by-product) production costs by electrolysis of NaCl in diaphragm cells 50
Table 10 Chlorine (caustic soda by-product) production costs by electrolysis of NaCl in membrane cells 52
Table 11 Chlorine (caustic soda by-product) production costs by electrolysis of NaCl in ODC cells 54

Figures

Figure 1 Comparison of total fixed capital investments by technology 9
Figure 2 Comparison of production costs by technology 10
Figure 3 Comparison of CO₂ emissions 12
Figure 4 Comparison of water consumption 13
Figure 5 Historical cash cost comparisons for chlorine production by four competing processes in the US Gulf Coast, $/ton 14
Figure 6 Historical cash costs for chlorine production by the membrane cell process in four world regions 14
Figure 7 World chlor-alkali demand versus GDP 15
Figure 8 Global chlorine production by feedstock 17
Figure 9 Global current demand for chlorine by end use 17
Figure 10 Historical and future demand for chlorine by world region 18
Figure 11 World caustic soda supply, demand, and industry operating rate 20
Figure 12 2015 global demand for the use of caustic by end use 20
Figure 13 Historical and future demand for caustic by world region 21
Figure 14 Total 2015 chlorine production capacity by world region 21
Figure 15 2015 chlorine plant capacity by region and technology 22
Figure 16 Block flow diagram for the mercury cell process 26
Figure 17 Block flow diagram for the diaphragm cell process 27
Figure 18 Block flow diagram for the membrane process 29
Figure 19 Conventional membrane cell configuration 31
Figure 20 Historical chlorine prices by major world region 38
Figure 21 Annual world nominal chlorine price 39
Figure 22 Historical caustic soda prices by major world region 40
Figure 23 Historical rock salt prices by major world region 40
Figure 24 Historical electricity prices by major world region 42
Figure 25 Historical and projected nominal annual world caustic soda price 42
Figure 26 Historical chlorine plant cash costs for four competing processes, USGC 43
Figure 27 Historical chlorine plant full production costs for all competing processes, USGC 43
Figure 28 Historical chlorine cash cost margin spreads for all competing technologies, USGC 44
Figure 29 Historical chlorine cash cost for four competing processes in China 44
Figure 30 Historical chlorine full production cost for four competing processes in China 45
Figure 31 Historical chlorine plant cash margin spread for all competing processes in China 45
Figure 32 Historical membrane cell cash cost by major world region 46
Figure 33 Comparison of plant cash cost of chlorine produced by Bayer ODC Cell electrolysis in major world regions 46
Figure 34 Membrane cell technology cash cost by major world region 47
IHS Customer Care:
Americas: +1 800 IHS CARE (+1 800 447 2273); CustomerCare@ihs.com
Europe, Middle East, and Africa: +44 (0) 1344 328 300; Customer.Support@ihs.com
Asia and the Pacific Rim: +604 291 3600; SupportAPAC@ihs.com