PEP Review 2016-14
Ammonia Production by Haldor Topsøe Conventional Technology

Narendra Kumar Agnihotra
Principal Analyst
Abstract

Ammonia is one of the most important industrial chemicals used in diverse sectors of the industry. It is used in the manufacturing of fertilizers, drugs, vitamins, explosive, cosmetics, plastic, and fibers. However, the major consumer of ammonia is urea (fertilizer). Worldwide, about 85% of ammonia is used for manufacturing urea.

Ammonia is manufactured from nitrogen and hydrogen mainly by air-methane reforming and steam methane reforming processes. Although ammonia production is now a mature technology, energy-efficient and low-cost production of ammonia is still a major challenge.

Numerous research papers, scientific reviews, technical reports, and companies’ patents have been published by academia, industry researchers, and technology licensors. The IHS Chemical Process Economics Program (PEP), too, has prepared technoeconomic analyses of different ammonia technologies periodically, and reported the results in numerous reports—namely, PEP Report 44B, Advances in Ammonia Technology (November 2009), PEP Report 44A, Ammonia (July 1980), and PEP Report 44, Ammonia (November 1968). The current review is the latest report from PEP on the subject of ammonia production. In this review, we present a technoeconomic assessment of an ammonia production process employing the conventional ammonia technology of Haldor Topsøe (Kongens Lyngby, Denmark). We also provide a technical review of the Haldor Topsøe conventional ammonia technology and an ammonia industry update. Lastly, an interactive costing module (iPEP Navigator) is also attached that provides a snapshot of the economics for each process, and also allows the user to select the process, units, and region of interest for individual costing purposes.

This review will be of interest to those who are looking to know about ammonia technologies and their economics. Those readers may be related to the technology or business of syngas and ammonia production.
Contents

1 Introduction 5
2 Summary 8
 Technical aspect—Haldor Topsøe ammonia process 8
 Feedstock 9
 Ammonia synthesis process 9
 Process economics 11
 Conclusion 12
3 Industry status 13
 Major producers of ammonia 13
4 Technology review of ammonia production from natural gas 16
 Process chemistry and generic process steps 16
 Feedstock 17
 Desulphurization 17
 Prerforming 18
 Steam methane reformer (SMR) 18
 Primary reformer 19
 Secondary reformer 20
 Water-gas shift (WGS) 20
 Carbon dioxide removal 20
 Methanation and compression 21
 Ammonia synthesis loop 21
 Catalyst system 23
 Ammonia reactors 23
 Two-catalyst-bed ammonia converter 24
 Three-catalyst-bed ammonia converter 25
5 Process description 26
 Ammonia refrigeration, steam and cooling water systems 31
 Process discussion 31
6 Cost estimates 39
 Fixed capital cost 39
 Production costs 39
Appendix A—Cited references 43
Appendix B—Process flow diagrams 45

Tables

Table 1 Physical properties of ammonia 6
Table 2 Summary of Haldor Topsøe conventional process for ammonia production 11
Table 3 World capacity for ammonia (thousands of metric tons of nitrogen) 15
Table 4 Current status of ammonia plants by Haldor Topsee 15
Table 5 Production of ammonia by Haldor Topsee conventional process—Design assumptions 32
Table 6 Production of ammonia by Haldor Topsee conventional process—Design bases 33
Table 7 Ammonia production process from natural gas by Haldor Topsøe—Stream flows (lb/hr)
Table 8 Ammonia production process from natural gas by Haldor Topsøe—Major equipment
Table 9 Ammonia production process from natural gas by Haldor Topsøe—Utilities summary
Table 10 Haldor Topsøe conventional process for ammonia production—Total capital investment
Table 11 Haldor Topsøe conventional process for ammonia production—Production costs

Figures

Figure 1 Block flow diagram of Haldor Topsøe ammonia process
Figure 2 Ammonia production capacity (world geographical distribution)
Figure 3 Ammonia supply and demand (world)
Figure 4 Haldor Topsøe conventional ammonia synthesis process
Figure 5 Haldor Topsøe ammonia synthesis loop (US 7,025,944 B2)
Figure 6 Haldor Topsøe ammonia reactor (S-300)—Embodiment of fixed three catalyst beds
Figure 7 Haldor Topsøe two-catalyst-bed ammonia reactor (US 4181701)
Figure 8 Haldor Topsøe three catalyst beds ammonia reactor (US 6540971B2)
Figure 9 Haldor Topsøe conventional process for ammonia production from natural gas—Product value of NH₃ product as a function of operating level and plant capacity
Figure 10 Haldor Topsøe conventional ammonia synthesis process
Figure 11 Haldor Topsøe conventional ammonia synthesis process
Figure 12 Haldor Topsøe conventional ammonia synthesis process
Figure 13 Haldor Topsøe ammonia refrigeration system