PEP Review 2017-01
CNPC (China National Petroleum Corporation) Millionton PTA Process

Rajesh Kumar Verma
Principal Analyst

Anthony Pavone
Senior Principal Analyst
Abstract

Purified terephthalic acid (COOH-C₆H₄-COOH), commonly known as PTA, is an aromatic dicarboxylic acid having major application in the production of polyethylene terephthalate (commonly referred to as polyester or PET). PET is used in clothing, fibers, and for manufacturing plastic bottles. In the past five years, world consumption of terephthalic acid has increased by around 4–6% per year, driven by population growth and increasing per capita consumption by the growing middle class in developing countries. Fast population growth, combined with the replacement of cotton as a textile raw material, has spurred the demand for polyester fibers in China and Southeast Asia. The demand for terephthalic acid has increased in North America and Europe mainly due to its application in the bottle and container markets, where glass has been largely replaced by lightweight PET bottles.

In 2016, global PTA consumption was approximately 60 million metric tons, while global capacity during the same period was approximately 70 million metric tons.

From the 1960s, catalytic partial oxidation of para-xylene followed by the purification step is the most widely used process for terephthalic acid production; other processes and feedstocks are less common and mostly obsolete now. Terephthalic acid production is an energy-intensive process, which generates a lot of gaseous and solid effluent that needs to be treated before disposal to the atmosphere. Several incremental improvements have been made over the years, covering the oxidation section, purification sections, effluent treatment, and mother liquor processing sections.

Prior to large-scale PTA production, dimethyl terephthalate (DMT) was the predominant cofeedstock along with monoethylene glycol (MEG) to produce PET. Over the time, advances in PTA purification technology have obviated the need for manufacturing DMT. DMT production in 2016 was approximately 2 million metric tons.

In the late 2000s, China National Petroleum Corporation (CNPC) has developed a new generation process for PTA production, and has been awarded some big PTA projects in China and overseas. This review focuses on the technoeconomic evaluation for the CNPC process for PTA production, with the available patents and other nonproprietary information documented in our evaluation.

The process economics developed in this review is based on a US Gulf Coast plant location and is presented in English units. However, we have included an iPEP Navigator interactive Excel attachment with the electronic version of this review, which allows our clients to convert the economics to other major global regions and between English and metric units. To use the iPEP Navigator file, open it in Excel and click on the “Display iPEP” Interface button. The economics automatically updates with the selection of a unit and a region in the list boxes.

Keywords: CNPC, crude terephthalic acid (CTA) purified terephthalic acid (PTA), para-xylene, partial oxidation
Contents

1 Introduction
 7

2 Summary
 9
 - Technical aspects
 - Feed composition
 - Catalysts and adsorbents
 - Oxidation section
 - CNPC process special features

3 Industry status
 14
 - PTA supply
 - PTA demand
 - PTA trade
 - PTA price

4 CNPC process technology for PTA production
 22
 - Technology review
 - Oxidation section
 - CTA crystallization and separation section
 - CTA hydrogenation section
 - PTA crystallization and separation section
 - Mother liquor processing section
 - Offgas treatment section
 - Reaction conditions
 - Oxidation catalyst
 - PTA partial oxidation-reactor design
 - Acetic acid recovery
 - Methyl acetate recovery
 - Staged crystallization technology
 - Solid-liquid separation
 - Hydrogenation
 - Mother liquor processing
 - Oxidation offgas treatment and energy recovery
 - Integrated steam utilization
 - Integrated water utilization and wastewater treatment
 - Chemical reactions and product impurities
 - para-Xylene oxidation
 - Side reactions
 - Acetic acid oxidation
 - 4-CBA hydrogenation
 - Product impurities

5 Design basis
 31
 - PTA input/output diagram
 - Segmentation of process plant
 - Block flow diagrams
 - Section 100—para-Xylene (PX) oxidation
 - Section 200—Crude terephthalic acid (CTA) crystallization
 - Section 300—Crude terephthalic acid (CTA) hydrogenation
Section 400—Purified terephthalic acid (PTA) crystallization and drying
Section 500—Mother liquor recovery
Section 600—Offgas treatment

6 Process description
Section 100—para-Xylene (PX) oxidation
Section 200—Crude terephthalic acid (CTA) crystallization
Section 300—Crude terephthalic acid (CTA) hydrogenation
Section 400—Purified terephthalic acid (PTA) crystallization and drying
Section 500—Mother liquor recovery
Section 600—Offgas treatment

7 Process discussion
Feed composition
Oxidation section
Solid/liquid separation section
Mother liquor recovery
Offgas treatment section

8 Capital and operating cost estimates
Fixed capital costs
Production costs

Appendix A—Patent summary
Appendix B—Cited references
Appendix C—Process flow diagrams

Tables
Table 1 CNPC PTA process—Unit critical parameters
Table 2 Summary of CNPC PTA process
Table 3 Global PTA producer nameplate capacity (2016)
Table 4 New announced PTA capacity
Table 5 CNPC Milliontons PTA production plant design basis (2016)
Table 6 CNPC PTA process product specification for PTA product
Table 7 CNPC Milliontons PTA process—Major streams flows
Table 8 CNPC Milliontons PTA process—Major equipment
Table 9 CNPC Milliontons PTA process—Utilities summary
Table 10 CNPC Milliontons PTA process—Total capital investment
Table 11 CNPC Milliontons PTA process—Total capital investment, variable costs
Table 12 CNPC Milliontons PTA process—Total capital investment, production costs

Figures
Figure 1 Effect of para-xylene price on production cost and product value
Figure 2 Effect of plant operating rate on production cost and product value
Figure 3 World PTA supply and demand
Figure 4 World 2016 PTA demand by region
Figure 5 US PTA economics delivered basis
Figure 6 para-Xylene versus PTA price history
Figure 7 CNPC process PTA input/output diagram
Figure 8 Overall schematic drawing for the CNPC PTA process
Figure 9 Section 100 block flow diagram—para-Xylene (PX) oxidation
Figure 10 CNPC PTA oxidation reactor
Figure 11 Schematic diagram of CNPC three-step CTA vacuum crystallization 36
Figure 12 Section 200 block flow diagram—Crude terephthalic acid (CTA) crystallization 36
Figure 13 Section 300 block flow diagram—Crude terephthalic acid (CTA) hydrogenation 37
Figure 14 Schematic diagram of CNPC 4-step PTA flash crystallization 38
Figure 15 Section 400 block flow diagram—Purified terephthalic acid (PTA) crystallization and drying 38
Figure 16 Schematic diagram of CNPC rotary pressurized filter 39
Figure 17 CNPC rotary dryer using indirect steam heat 39
Figure 18 Schematic drawing of CNPC first-stage mother liquor recovery process 40
Figure 19 Schematic diagram of CNPC second-stage mother liquor recovery process 41
Figure 20 Section 500 block flow diagram—Mother liquor recovery 42
Figure 21 Section 600 block flow diagram—Offgas treatment 43
Figure 22 Schematic diagram of Linde nitrogen PSA unit 44
Figure 23 CNPC PTA process (1 of 6) 85
Figure 24 CNPC PTA process (2 of 6) 86
Figure 25 CNPC PTA process (3 of 6) 87
Figure 26 CNPC PTA process (4 of 6) 88
Figure 27 CNPC PTA process (5 of 6) 89
Figure 28 CNPC PTA process (6 of 6) 90