INS CHEMICAL CNPC (China National Petroleum Corporation) Millionton PTA Process

Process Economics Program Review 2017-01

April 2017

ihs.com

Rajesh Kumar Verma Principal Analyst

Anthony Pavone Senior Principal Analyst

PEP Review 2017-01

CNPC (China National Petroleum Corporation) Millionton PTA Process

Rajesh Kumar Verma, Principal Analyst Anthony Pavone, Senior Principal Analyst

Abstract

Purified terephthalic acid (COOH-C₆H₄-COOH), commonly known as PTA, is an aromatic dicarboxylic acid having major application in the production of polyethylene terephthalate (commonly referred to as polyester or PET). PET is used in clothing, fibers, and for manufacturing plastic bottles. In the past five years, world consumption of terephthalic acid has increased by around 4–6% per year, driven by population growth and increasing per capita consumption by the growing middle class in developing countries. Fast population growth, combined with the replacement of cotton as a textile raw material, has spurred the demand for polyester fibers in China and Southeast Asia. The demand for terephthalic acid has increased in North America and Europe mainly due to its application in the bottle and container markets, where glass has been largely replaced by lightweight PET bottles.

In 2016, global PTA consumption was approximately 60 million metric tons, while global capacity during the same period was approximately 70 million metric tons.

From the 1960s, catalytic partial oxidation of *para*-xylene followed by the purification step is the most widely used process for terephthalic acid production; other processes and feedstocks are less common and mostly obsolete now. Terephthalic acid production is an energy-intensive process, which generates a lot of gaseous and solid effluent that needs to be treated before disposal to the atmosphere. Several incremental improvements have been made over the years, covering the oxidation section, purification sections, effluent treatment, and mother liquor processing sections.

Prior to large-scale PTA production, dimethyl terephthalate (DMT) was the predominant cofeedstock along with monoethylene glycol (MEG) to produce PET. Over the time, advances in PTA purification technology have obviated the need for manufacturing DMT. DMT production in 2016 was approximately 2 million metric tons.

In the late 2000s, China National Petroleum Corporation (CNPC) has developed a new generation process for PTA production, and has been awarded some big PTA projects in China and overseas. This review focuses on the technoeconomic evaluation for the CNPC process for PTA production, with the available patents and other nonproprietary information documented in our evaluation.

The process economics developed in this review is based on a US Gulf Coast plant location and is presented in English units. However, we have included an iPEP Navigator interactive Excel attachment with the electronic version of this review, which allows our clients to convert the economics to other major global regions and between English and metric units. To use the iPEP Navigator file, open it in Excel and click on the "Display iPEP" Interface button. The economics automatically updates with the selection of a unit and a region in the list boxes.

Keywords: CNPC, crude terephthalic acid (CTA) purified terephthalic acid (PTA), para-xylene, partial oxidation

© 2017 IHS

1

IHS Chemical | PEP Review 2017-01 CNPC (China National Petroleum Corporation) Millionton PTA Process

Contents

1	Introduction	7
2	Summary	9
	Technical aspects	9
	Feed composition	10
	Catalysts and adsorbents	11
	Oxidation section	11
_	CNPC process special features	11
3	Industry status	14
	PTA supply	14
	PTA demand	18
	PTA trade	20
	PTA price	20
4	CNPC process technology for PTA production	22
	Technology review	22
	Oxidation section	22
	CTA crystallization and separation section	22
	CTA hydrogenation section	22
	PTA crystallization and separation section	22
	Mother liquor processing section	23
	Offgas treatment section	23
	Reaction conditions	23
	Oxidation catalyst	24
	PTA partial oxidation-reactor design	24
	Acetic acid recovery	25
	Methyl acetate recovery	26
	Staged crystallization technology	26
	Solid-liquid separation	26
	Hydrogenation	27
	Nother liquor processing	27
	Oxidation origas treatment and energy recovery	28
	Integrated steam utilization and wastewater treatment	20
	Chamical reactions and product impurition	20
	chemical reactions and product impunities	29
	Side reactions	29
	Acotic acid oxidation	29
	A-CBA hydrogenation	23
		30
5	Design basis	31
5	PTA input/output diagram	31
	Segmentation of process plant	33
	Block flow diagrams	30
	Section 100—para-Xylene (PX) oxidation	34
	Section 200—Crude terephthalic acid (CTA) crystallization	34
	Section 300—Crude terephthalic acid (CTA) bydrogenation	27
		51

IHS™ CHEMICAL

COPYRIGHT CALL COPYRIGHT ADD DISCLAIMER © 2017 IHS. For internal use of IHS diants only. No portion of this report may be reproduced, reused, or otherwise distributed in any form without prior written consent, with the exception of any internal diant distribution as may be permitted in the license agreement between diant and IFS. Contert reproduced or redistributed with IHS permission must display IHS legal notices and attributions of authorship. The information contained herein in prior united by law, IHS shall not be lable for any errors or omissions or any loss, damage, or expense incurred by reliance on information or any statement contained herein. In particular, please note that no representation or warranticed, nor are the and results may differ materially from forecasts and statements of belief noted herein. This report is not to be construed as legal or financial advice, and use of or reliance on any information in this publication is entirely at client's own risk. IHS and the IHS log are trademarks of IHS.

	Section 400—Purified terephthalic acid (PTA) crystallization and drying	38
	Section 500—Mother liquor recovery	40
	Section 600—Offgas treatment	43
6	Process description	63
	Section 100—para-Xylene (PX) oxidation	63
	Section 200—Crude terephthalic acid (CTA) crystallization	64
	Section 300—Crude terephthalic acid (CTA) hydrogenation	64
	Section 400—Purified terephthalic acid (PTA) crystallization and drying	65
	Section 500—Mother liquor recovery	66
	Section 600—Offgas treatment	67
7	Process discussion	68
	Feed composition	68
	Oxidation section	68
	Solid/liquid separation section	69
	Mother liquor recovery	69
	Offgas treatment section	69
8	Capital and operating cost estimates	71
	Fixed capital costs	71
	Production costs	71
Appendix A—Patent summary		
Appendix B—Cited references		81
Appendix C—Process flow diagrams		

Tables

Table 1 CNPC PTA process—Unit critical parameters	10
Table 2 Summary of CNPC PTA process	12
Table 3 Global PTA producer nameplate capacity (2016)	14
Table 4 New announced PTA capacity	18
Table 5 CNPC Milliontons PTA production plant design basis (2016)	32
Table 6 CNPC PTA process product specification for PTA product	33
Table 7 CNPC's Milliontons PTA process—Major streams flows	45
Table 8 CNPC Milliontons PTA process—Major equipment	57
Table 9 CNPC Milliontons PTA process—Utilities summary	62
Table 10 CNPC Milliontons PTA process—Total capital investment	72
Table 11 CNPC Milliontons PTA process—Total capital investment, variable costs	73
Table 12 CNPC Milliontons PTA process—Total capital investment, production costs	74

Figures

Figure 1 Effect of para-xylene price on production cost and product value	13
Figure 2 Effect of plant operating rate on production cost and product value	13
Figure 3 World PTA supply and demand	19
Figure 4 World 2016 PTA demand by region	19
Figure 5 US PTA economics delivered basis	20
Figure 6 para-Xylene versus PTA price history	21
Figure 7 CNPC process PTA input/output diagram	31
Figure 8 Overall schematic drawing for the CNPC PTA process	33
Figure 9 Section 100 block flow diagram—para-Xylene (PX) oxidation	34
Figure 10 CNPC PTA oxidation reactor	35

Figure 11 Schematic diagram of CNPC three-step CTA vacuum crystallization	36
Figure 12 Section 200 block flow diagram—Crude terephthalic acid (CTA) crystallization	36
Figure 13 Section 300 block flow diagram—Crude terephthalic acid (CTA) hydrogenation	37
Figure 14 Schematic diagram of CNPC 4-step PTA flash crystallization	38
Figure 15 Section 400 block flow diagram—Purified terephthalic acid (PTA) crystallization and	
drying	38
Figure 16 Schematic diagram of CNPC rotary pressurized filter	39
Figure 17 CNPC rotary dryer using indirect steam heat	39
Figure 18 Schematic drawing of CNPC first-stage mother liquor recovery process	40
Figure 19 Schematic diagram of CNPC second-stage mother liquor recovery process	41
Figure 20 Section 500 block flow diagram—Mother liquor recovery	42
Figure 21 Section 600 block flow diagram—Offgas treatment	43
Figure 22 Schematic diagram of Linde nitrogen PSA unit	44
Figure 23 CNPC PTA process (1 of 6)	85
Figure 24 CNPC PTA process (2 of 6)	86
Figure 25 CNPC PTA process (3 of 6)	87
Figure 26 CNPC PTA process (4 of 6)	88
Figure 27 CNPC PTA process (5 of 6)	89
Figure 28 CNPC PTA process (6 of 6)	90

IHS Customer Care:

Americas: +1 800 IHS CARE (+1 800 447 2273); CustomerCare@ihs.com Europe, Middle East, and Africa: +44 (0) 1344 328 300; Customer.Support@ihs.com Asia and the Pacific Rim: +604 291 3600; SupportAPAC@ihs.com

