Syngas Production for Ammonia from Natural Gas

Process Economics Program Review 2017-03

January 2017

Rajiv Narang
Director, PEP
PEP Review 2017-03

Syngas Production for Ammonia from Natural Gas

Rajiv Narang, Director, PEP

Abstract

This Process Economics Program (PEP) review presents an update on the subject of synthesis gas production from natural gas, specifically addressing the manufacture of synthesis gas for ammonia production based on the Haldor Topsøe technology for syngas/ammonia production. Previous PEP reports—namely, PEP Report 148A, Synthesis Gas (November 1995) [1], and PEP Report 148B, Synthesis Gas Production from Natural Gas Reforming (August 2013) [2]—addressed the manufacture of synthesis gas for various products like hydrogen, methanol, and Fischer-Tropsch products (naphtha and diesel). This review expands the portfolio of PEP syngas reports on syngas manufacture for use in ammonia production. Just for note here, the requirement of synthesis gas for ammonia differs considerably from the requirement for other products (methanol, hydrogen, acetic acid, Fischer-Tropsch products, etc.). The difference is mostly in the ratios of hydrogen to carbon monoxide (or nitrogen), and the allowable impurities of trace components.

Besides presenting design and cost economics of a manufacturing process, modeled with a similar configuration as of the Haldor Topsøe process, this review also provides a description of the salient features of natural gas reforming technology. Process design and economics are given for syngas production only. Synthesis of ammonia using Haldor Topsøe technology is covered in PEP Review 2016-14, Ammonia Production by Haldor Topsøe Conventional Technology (December 2016).

The design and process configuration presented in this review for the above technology are of a conceptual nature, the basic data for which is extracted from patents, technical articles, and the company’s brochures, all available within the domain of public information. PEP internal information sources, which are also based on talks with the licensors and producers, have also been used.

This review provides insight into syngas plant process economics, and can be used as a tool for cost estimation for different syngas plant capacities. It will be highly beneficial for planners and producers looking at downstream products from the syngas, especially now when the focus on chemicals manufacturing is shifting to the United States with the development of relatively cheaper shale gas.

This review also expands the application area of the iPEP Syngas module, which will now cover synthesis gas production economics for ammonia production.
Contents

1 Introduction 6
2 Summary 8
3 Technology and chemistry overview 10
4 Technical review 13
5 Process description 15
 Basis of design 15
 Section 100—Inlet gas cleanup 16
 Section 200—Prerforming and reforming section 16
 Prerformer 16
 Primary reformer 16
 Section 300—Secondary reforming 17
 Section 400—Water-gas shift conversion 17
 High-temperature water-gas shift 17
 Low-temperature water-gas shift 17
 Section 500—Carbon dioxide removal section 18
 Section 600—Methanation 18
 Materials of construction 18
 Process waste effluents 18
 Utilities 19
6 Cost estimates 23
 Fixed capital costs 23
 Production costs 23
Appendix A—Cited references 28
Appendix B—Process flow diagrams 31

Tables

Table 1 Summary of synthesis gas manufacturing process from natural gas for ammonia 9
Table 2 Design basis for synthesis gas production from natural gas 15
Table 3 Synthesis gas from natural gas for ammonia—Stream flows 19
Table 4 Production of synthesis gas from natural gas for ammonia—Major equipment 21
Table 5 Production of synthesis gas from natural gas for ammonia 22
Table 6 Synthesis gas production from natural gas for ammonia—Total capital investment 24
Table 7 Synthesis gas production from natural gas for ammonia—Production costs 25
Table 8 Synthesis gas from natural gas for ammonia—Production costs 26
Figures

Figure 1 Derivatives of synthesis gas 7
Figure 2 Block flow diagram for synthesis gas manufacture from natural gas for ammonia 10
Figure 3 Synthesis gas from natural gas for ammonia—Net production cost of synthesis gas as a function of operating level and plant capacity 27
Figure 4 Synthesis gas from natural gas 32
Figure 5 Synthesis gas from natural gas 33