Syngas Production for Ammonia from Coal

Rajiv Narang
Director, PEP
Syngas Production for Ammonia from Coal

Rajiv Narang, Director, PEP

Abstract

This Process Economics Program (PEP) review presents an update on the subject of synthesis gas (syngas) production from coal. The review specifically addresses the manufacture of synthesis gas for ammonia production, based on two reputed gasification technologies—GE Energy quench and Shell Coal Gasification Process (SCGP) technologies. Two types of coal feeds have been considered in analysis for each technology—bituminous (represented by Illinois #6 coal) and subbituminous (represented by Powder River Basin Wyodak coal). PEP recently published two detailed reports—PEP Report 148C, Synthesis Gas Production from Coal and Petroleum Coke Gasification (September 2013) and Report 148D, Synthesis Gas Production from Chinese Gasifiers (December 2015)—that addressed production of syngas from coal and pet coke, using various gasifier technologies in commercial use worldwide. This review pertains to production of syngas only; technologies for ammonia production from syngas are covered in other PEP reports and reviews.

The designs and process configurations for the abovementioned technologies are conceptual in nature; basic data for process design is derived from the patents, technical articles, and companies’ brochures available in the public information domain. PEP internal information sources, which are based on in-house data and discussions with the licensors/producers, have also been used.

Process economics have been worked out to obtain capital costs and production costs of syngas. The requirements for syngas produced for an ammonia plant differ considerably from the requirements for the same for other products like methanol, hydrogen, acetic acid, and Fischer-Tropsch products. The difference is mostly in the ratios of hydrogen to carbon monoxide (or nitrogen), and in the allowable impurities of trace components.

In addition to the description of the technologies’ technical aspects, this review provides insight into syngas plant process economics that can be used as a tool for cost estimation for different syngas plant capacities. This review is highly beneficial for those industry planners and producers who are looking at downstream products of the syngas; it also expands the coverage and scope of our in-house PEPSyngas™ costing module, as the said module will now also be available for costing coal-based syngas production processes for ammonia plants.
Contents

1 Introduction 5
2 Summary 6
3 Technical review 16
 Introduction 16
 Feedstock 18
 Bituminous coal 21
 Subbituminous coal 21
 Gasifiers 21
 Entrained-flow gasifiers 21
 GE Energy quench gasification 22
 Shell Coal Gasification Process (SCGP) 23
 Gasification chemistry 25
 Stoichiometric and thermal constraints 26
 Process description 26
 Feedstock preparation 26
 Coal water slurry 26
 GE Energy quench gasification 27
 Section 100—Air separation 27
 Section 200—Gasification 28
 Section 300—Gas cleanup 29
 Shell Coal Gasification Process (SCGP) 34
 Section 100—Air separation 34
 Section 200—Gasification 34
 Section 300—Gas cleanup 35
 Design basis 40
 Process discussion 40
 Cost estimates 41
 Fixed capital costs 41
 Production costs 41
 GE quench 43
 Shell Coal Gasification Process (SCGP) 48

Appendix A—Cited references 53
Appendix B—Process flow diagrams 55

Tables

Table 1 GE quench gasification—Total fixed cost 8
Table 2 GE quench using bituminous coal—Production costs 9
Table 3 GE quench using subbituminous coal—Production costs 10
Table 4 Shell gasification using bituminous coal—Total capital investment 11
Table 5 Shell gasification using bituminous coal—Production costs 12
Table 6 Shell gasification using subbituminous coal—Production costs 13
Table 7 GE quench gasification summary 14
Table 8 Shell gasification summary 15
Table 9 Design features of entrained-flow gasifiers 16
Table 10 Ultimate analysis of specific coal types 20
Table 11 Coal gasification chemical reactions 25
Table 12 Typical raw syngas composition 26
Table 13 GE quench stream summary for bituminous coal 31
Table 13 GE quench stream summary for bituminous coal (concluded) 32
Table 14 GE quench stream summary for subbituminous coal 32
Table 14 GE quench stream summary for subbituminous coal (concluded) 33
Table 15 Shell gasification for bituminous coal 37
Table 15 Shell gasification for bituminous coal (concluded) 38
Table 16 Shell gasification for subbituminous coal 38
Table 16 Shell gasification for subbituminous coal (concluded) 39
Table 17 Design basis 40
Table 18 GE quench gasification summary 42
Table 19 Shell gasification summary 42
Table 20 GE quench using bituminous coal—Utility summary 43
Table 21 GE quench using subbituminous coal—Utility summary 43
Table 22 GE quench using bituminous coal—Total capital investment 44
Table 23 GE quench using subbituminous coal—Total capital investment 45
Table 24 GE quench using bituminous coal—Production costs 46
Table 25 GE quench using subbituminous coal—Production costs 47
Table 26 Shell gasification using bituminous coal—Utility summary 48
Table 27 Shell gasification using subbituminous coal—Utility summary 48
Table 28 Shell gasification using bituminous coal—Total capital investment 49
Table 29 Shell gasification using subbituminous coal—Total capital investment 50
Table 30 Shell gasification using bituminous coal—Production costs 51
Table 31 Shell gasification using subbituminous coal—Production costs 52

Figures

Figure 1 PEP reports and reviews on synthesis gas sources and application 7
Figure 2 GE quench gasification summary 14
Figure 3 Shell gasification summary 15
Figure 4 GE quench synthesis gas production 17
Figure 5 Shell gasification synthesis gas production 18
Figure 6 Proximate analysis by coal rank 19
Figure 7 GE quench gasifier 23
Figure 8 Shell gasifier 24
Figure 9 Synthesis gas by GE quench gasification process flow diagram 56
Figure 10 Synthesis gas by Shell gasification process flow diagram 57