IHS CHEMICAL

Diphenyl Carbonate by Asahi Kasei Process

Process Economics Program Review 2017-06

April 2017 ihs.com

PEP Review 2017-06
Diphenyl Carbonate by Asahi Kasei Process

Susan Bell
Senior Principal Analyst
Abstract

Recent Asahi Kasei’s patents for diphenyl carbonate (DPC) production from ethylene oxide and CO₂ reveal patent examples based on commercial-scale production. Polycarbonate (PC) can be produced by reacting DPC with bisphenol A. The current review updates our earlier assessment of the Asahi Kasei’s commercial process to produce DPC based on these patents. This review includes an analysis of the technology and a conceptual process design with process flow diagram depicting DPC production by this technology, stream flow, mass and energy balance, and major equipment lists with equipment sizing. The process design is based on a plant capable of producing 110,000 metric tons per year (tpy) of DPC, which is capable of supplying a 130,000 tpy PC plant.
Contents

1 Introduction 5
2 Summary 7
3 Industry status 10
4 Process description 13
 Process design 13
 Section 100—Ethylene carbonate production 23
 Section 200—Dimethyl carbonate production 24
 Section 300—Diphenyl carbonate production 24
 Process discussion 25
 Patents 25
 Ethylene carbonate production 25
 Dimethyl carbonate production 26
 Diphenyl carbonate production 28
 Aspen simulations 31
 Waste treatment 33
5 Cost estimates 34
 Capital costs 34
 DPC production costs 36
 Polycarbonate production costs 39
Appendix A—Cited references 41
Appendix B—Process flow diagrams 43

Tables

Table 2.1 Comparison of updated Asahi Kasei’s DPC process and prior evaluation of PEP Report 50E 7
Table 2.2 Estimated capital investment and production economics for a 110 ktpy diphenyl carbonate production plant based on Asahi Kasei technology 8
Table 2.3 Estimated production economics for a 130 ktpy polycarbonate production plant 9
Table 3.1 List of plants using Asahi Kasei polycarbonate and DPC technology 12
Table 4.1 Diphenyl carbonate production by Asahi Kasei process—Design bases and assumptions 14
Table 4.2 Diphenyl carbonate production by a process similar to Asahi Kasei process—Stream flows 15
Table 4.3 Diphenyl carbonate production by a process similar to Asahi Kasei process—Major equipment 18
Table 4.4 Diphenyl carbonate production by a process similar to Asahi Kasei process—Utilities summary 23
Table 4.5 Column size summary 32
Table 4.6 Summary of major waste streams 33
Table 5.1 Diphenyl carbonate production by a process similar to Asahi Kasei process—Total capital investment 35
Table 5.2 Diphenyl carbonate production by a process similar to Asahi Kasei process—Capital investment by section 36
Table 5.3 Diphenyl carbonate production by a process similar to Asahi Kasei process—Production costs 37
Table 5.4 Polycarbonate production by a process similar to Asahi Kasei process—Production costs 39
Figures

Figure 1.1 Production of diphenyl carbonate by Asahi Kasei process 5
Figure 1.2 Production of polycarbonate by Asahi Kasei process 6
Figure 2.1 US polycarbonate price (general purpose delivered contract) 9
Figure 3.1 2016 world polycarbonate demand 10
Figure 3.2 2016 world polycarbonate production by feedstock 11
Figure 3.3 2021 world polycarbonate production by feedstock 11
Figure 4.1 US20090105494 patent example 1 27
Figure 4.2 US8071819 patent example 1 28
Figure 4.3 US20070260084 patent example 1 30
Figure 4.4 US7884251 patent example 2 31
Figure 6.1 Diphenyl carbonate production by a process similar to Asahi Kasei process 44