Abstract

In this process summary, we review isoprene production processes and present key features and production economics for them. The processes covered include isoprene production from (1) C5 fraction by dimethylformamide (DMF) extractive distillation, (2) isobutylene and formaldehyde two-step process, (3) acetone and acetylene, (4) amylene, (5) C5 stream by distillation, (6) Kuraray one-step process, (7) pygas C5 cut by solvent extraction (GTC process), and (8) biobased isoprene. We look at these processes for four major global regions. The process economics include estimated capital costs, variable costs, direct costs, plant cash costs, and full production costs in third quarter 2016 (snapshot economics). We also present carbon footprint and water consumption comparison data for the all these competing processes. A brief market overview summarizes the global supply and demand and end-use markets and demand drivers.

The third quarter 2016 snapshot economics are obtained by using unit price of raw materials, by-products, utilities, labor, and construction cost at the time. To take into account of the fluctuation of prices, this review highlights a new iPEP Spectra™ cost module, developed by the IHS Chemical Process Economics Program (PEP), in which production economics are presented in a time series from 2000 to third quarter 2016, quarterly. The iPEP Spectra™ data module is written in Microsoft Excel pivot tables, which provides a powerful interactive tool to allow our clients maximum flexibility in selecting competing technology and production location and comparing production cost at various levels, such as variable costs, cash costs, or full production costs, as well as margins. The cost module is included with the full process summary on the PEP website. An iPEP Spectra™ historical economics comparison provides a more comprehensive way to compare the economics of competing technologies over a long period of time, leading to a more valid investment decision.
Contents

1. Executive summary
 2. Introduction
 - Technology
 - Routes via C_5 cracking fractions
 - Routes via skeleton from smaller units (on-purpose routes)
 - Bioroutes
 - Processes
 - Process economics comparison
 - Production costs
 - Comparison of carbon emissions
 - Comparison of water consumption
 - Historical economics comparison—iPEP Spectra™ analysis
 - Cash costs for production of isoprene by different technologies in the US Gulf Coast
 - Cash costs for production of isoprene from C_5 fraction by DMF extractive distillation in four world regions
 3. Market overview
 4. Isoprene production processes
 - Chemistry
 - Isoprene production by extraction from C_5 hydrocarbon streams (DMF extractive distillation)
 - Isoprene production via isobutylene carbonylation (two-step process)
 - Isoprene production from acetone and acetylene
 - Isoprene production from amylene
 - Isoprene production via controlled fractional distillation
 - Isoprene production via Kuraray one-step process
 - Isoprene separation from pygas C_5 cut by single-stage solvent extraction (GT-IsopreneSM™)
 - Biosoprene™ process
 - Processes
 - Isoprene production by extraction from C_5 hydrocarbon streams (DMF extractive distillation)
 - Isoprene production via isobutylene carbonylation (two-step process)
 - Isoprene production from acetone and acetylene
 - Isoprene production from amylene
 - Isoprene production from a C_5 stream by distillation
 - Kuraray one-step process for isoprene production
 - Isoprene separation from pygas C_5 cut by single-stage solvent extraction (GTC process)
 - Biobased isoprene production (Biosoprene™)
 5. Process economics
 - Unit consumptions and variable costs
 - Capital costs
 - Environmental aspects
 6. Historical economics comparison—an iPEP Spectra™ analysis
 - Historical prices
 - Isoprene
 - Historical process economics comparison—iPEPSpectra™ cost module
 - Plant cash costs by region
 - Historical spread (margin)
7 Detailed process economics
8 Cost basis
 Capital investment
 Production costs
 Effect of operating level on production costs

Appendix A—Cited references

Tables

Table 1 Routes for isoprene production 10
Table 2 World top producers of isoprene 26
Table 3 Extraction from C5 stream process data 27
Table 4 Isoprene production from isobutylene and formaldehyde (two-step process) process data 29
Table 5 Isoprene production from acetone and acetylene process data 30
Table 6 Isoprene production from isoamylenes process data 31
Table 7 Isoprene production from acetone and acetylene process data Isoprene production from C5 streams via controlled fractional distillation process data 32
Table 8 Isoprene production from Kuraray one-step process data 33
Table 9 Isoprene production from GTC process (pygas C5 cut by single-stage solvent extraction process data) 34
Table 10 Variable costs of isoprene production processes 48
Table 11 Capital cost for different isoprene production processes 49
Table 12 Summary of updated replacement cost economic attributes of different types of worldscape isoprene plants at full capacity 50
Table 13 Environmental impacts of isoprene production processes 51
Table 14 Isoprene from a C5 fraction by DMF extractive distillation 71
Table 15 Isoprene from isobutylene and formaldehyde—Two-step process 73
Table 16 Isoprene from acetone and acetylene 75
Table 17 Isoprene from amylenes 77
Table 18 Isoprene from C5 streams by distillation 79
Table 19 Isoprene via Kuraray one-step process 81
Table 20 Isoprene separation from pygas C5 cut by solvent extraction 83
Table 21 Biobased isoprene 85

Figures

Figure 1 Industrial applications of isoprene 8
Figure 2 Simplified view of alternative routes to isoprene monomer 14
Figure 3 Comparison of technologies—Capital intensity 15
Figure 4 Comparison of isoprene production technologies—Total fixed capital (TFC) 15
Figure 5 Comparison of isoprene production technologies—Production cost 16
Figure 6 Comparison of CO2 emissions 17
Figure 7 Comparison of water consumption 18
Figure 8 Historical cash cost comparisons for isoprene production by different processes in the US Gulf Coast (US$/ton) 19
Figure 9 Historical cash costs for isoprene production from C5 fraction by DMF extractive distillation in four world regions (US$/ton) 20
Figure 10 World isoprene supply and demand 21
Figure 11 Global 2016 isoprene demand 22
Figure 12 Historical and future demand for isoprene by world region 23
Figure 13 Global isoprene production by feedstock 24
Figure 14 Isoprene capacity by world region 25
Figure 15 Isoprene capacity by technology—2016 25

© 2017 IHS

Downloaded 21 February 2017 09:33 AM UTC by Ellen Blue, IHS INC (Ellen.Blue@ihsmarkit.com)
Figure 16 MEP pathway (biotechnology platform for isoprene production) 35
Figure 17 Block flow diagram for isoprene production by extraction from C5 hydrocarbon streams (DMF extractive distillation) 36
Figure 18 Block flow diagram for isoprene production by isobutylene carbonylation (two-step process) 38
Figure 19 Block flow diagram for isoprene production from acetone and acetylene 40
Figure 20 Block flow diagram for isoprene production from amylenes 41
Figure 21 Block flow diagram for isoprene production from C5 streams by distillation 42
Figure 22 Block flow diagram for isoprene production by Kuraray one-step process 43
Figure 23 Block flow diagram for isoprene production from C5 streams by distillation 45
Figure 24 Schematic representation of Genencor’s technology 46
Figure 25 Block flow diagram for biobased isoprene 47
Figure 26 Historical isoprene prices ($/ton) by major world region 52
Figure 27 Historical isoprene plant cash costs ($/ton) for different isoprene production processes, China 54
Figure 28 Comparison of plant cash cost ($/ton) of isoprene produced from C5 fraction by DMF extractive distillation, in major regions 55
Figure 29 Comparison of plant cash cost ($/ton) of isoprene produced from isobutylene and formaldehyde (two-step process), in major regions 56
Figure 30 Comparison of plant cash cost ($/ton) of isoprene produced from acetone and acetylene, in major regions 57
Figure 31 Comparison of plant cash cost ($/ton) of isoprene produced from amylenes, in major regions 58
Figure 32 Comparison of plant cash cost ($/ton) of isoprene produced from C5 streams by direct distillation, in major regions 59
Figure 33 Comparison of plant cash cost ($/ton) of isoprene produced from Kuraray one-step process, in major regions 60
Figure 34 Comparison of plant cash cost ($/ton) of isoprene produced from pygas C5 cut by solvent extraction, in major regions 61
Figure 35 Comparison of plant cash cost ($/ton) of biobased isoprene, in major regions 62
Figure 36 Historic spread (margin $/metric ton) for isoprene production from C5 fraction by DMF extractive distillation, in major regions 63
Figure 37 Historic spread (margin $/metric ton) for isoprene production from isobutylene and formaldehyde (two-step process), in major regions 64
Figure 38 Historic spread (margin $/metric ton) for isoprene production from isobutylene and formaldehyde (two-step process), in major regions 65
Figure 39 Historic spread (margin $/metric ton) for isoprene production from amylenes, in major regions 66
Figure 40 Historic spread (margin $/metric ton) for isoprene production from C5 streams by distillation, in major regions 67
Figure 41 Historic spread (margin $/metric ton) for isoprene production via Kuraray one-step process, in major regions 68
Figure 42 Historic spread (margin $/metric ton) for isoprene separation from pygas C5 cut by solvent extraction processes, in major regions 69
Figure 43 Historic spread (margin $/metric ton) for biobased isoprene, in major regions 70