Abstract

Styrene-butadiene rubber (SBR) is currently the largest-volume elastomer produced on a global basis. It is used mostly in the production of automobile tires, but also in the production of industrial goods such as belts and hoses. The largest end use of styrene-butadiene rubber is in production of automobile tires. Other uses of SBR include industrial goods such as conveyor belts, industrial hoses, and gaskets, as well as consumer goods such as footwear. There are two classes of production processes for SBR. Emulsion polymerization is the original process and still the dominant process in the industry. However, the solution polymerization process has emerged as the preferred process of choice. Global SBR demands by the emulsion and solution polymerization processes are expected to grow at annual rates of 3.1% and 4.4%, respectively, in the near future.

In this Process Economics Program (PEP) process summary, we review the current technologies for industrial production of styrene-butadiene rubber. Almost 76% of SBR is currently produced by the emulsion process, versus 24% by the solution polymerization process. The solution polymerization process results in better quality product with more flexibility in tailoring the properties relevant to “green tires” (longer-lasting tires that allow higher gas mileage). The technologies presented here are based on previous PEP reports and reviews on this subject and are consolidated for a convenient overview. Moreover, a brief summary of SBR supply and demand is presented, mostly on the global basis. Historical price movement in the product and the feedstock is presented along with a summary of underlying market drivers.

The production economics assessment in this review is based on a US Gulf Coast (USGC) location. However, an iPEP Navigator module is attached to the electronic version of this process summary to allow a quick conversion of snapshot process economics to three other major regions—Germany, Japan, and China. With the selection of each competing process, the module also allows production economics to be reported in English or metric units for each region.

Moreover, due to the fluctuation and variation of feedstock and utility prices over time and in different regions, ranking of the processes by a snapshot comparison can be misleading. To overcome the deficiency of a traditional snapshot economics comparison, this process summary also includes an iPEP Spectra interactive data module, by which our clients can quickly compare historical quarterly production economics of competing processes in major global regions from 2000 through the second quarter of 2016. The interactive module, written as a Microsoft Excel pivot table, is also attached with the electronic version of this process summary. The module provides a powerful interactive tool to compare production economics at various levels, such as variable cost, cash cost, and full production cost. An iPEP Spectra module provides a more comprehensive way of assessing competing technologies, leading to a more valid investment decision.

While the processes herein are PEP’s independent interpretation of the companies’ patent literature and may not reflect in whole or in part the actual plant configuration, we do believe that they are sufficiently representative of the processes to estimate the plant economics within the range of accuracy for economic evaluations of the conceptual process designs.
Contents

1 Executive summary 6
 Introduction 6
 Processes 6
 Producers 6
 Process economics 7
 Environmental impact 8
 Market overview 9
 End-use markets and demand drivers 9
 Supply and demand 10
 Emulsion SBR 10
 Solution SBR 13
 Cash costs 17
 Conclusions 19

2 Production processes 20
 Introduction 20
 Chemistry 20
 Copolymerization 20
 Living polymerization 21
 Commercial technologies 21
 SBR by solution polymerization 22
 SBR by emulsion polymerization 22
 Comparison of key process parameters 24
 Technology review 24

3 Process economics 26
 Variable costs 26
 Capital costs 27
 Production costs 27
 Environmental impact 29

4 Market overview 31
 End-use markets and demand drivers 31
 Supply and demand 32
 SBR emulsion 32
 Solution SBR 35
 Capacity 39
 Environmental issues 41

5 Historical economics comparison 44
 Historical prices 44
 Cash costs 47

6 Conclusions 49

Appendix B—Detailed process economics 52
Appendix C—Cited references 60
Appendix D—Patent summary table 62
Tables

Table 1 Comparison of key process parameters 24
Table 2 SBR variable costs 26
Table 3 SBR capital costs 27
Table 4 SBR production costs 28
Table 5 SBR production processes—CO₂ emissions 29
Table 6 SBR production processes—Water usage 30
Table 7 Largest producers of emulsion SBR 40
Table 8 Largest producers of solution SBR 41
Table 9 Emulsion SBR product specifications 51
Table 10 Solution SBR product specifications 51
Table 11 Solution SBR by Bridgestone process—Production costs 53
Table 12 Solution SBR by Versalis process—Production costs 54
Table 13 Solution SBR production by Lanxess process—Production costs 55
Table 14 Solution SBR Bridgestone98—Production costs 56
Table 15 Emulsion SBR—Production costs 58
Table 16 SBR patent summary 63

Figures

Figure 1 SBR production processes—Capital investment 7
Figure 2 SBR production processes—Production costs 8
Figure 3 SBR production processes—CO₂ emissions 9
Figure 4 SBR production processes—Water usage 9
Figure 5 SBR emulsion supply and demand 11
Figure 6 World SBR emulsion production by region—2015 11
Figure 7 World SBR emulsion demand by region—2020 (projected) 12
Figure 8 SBR emulsion demand by region 12
Figure 9 SBR emulsion capacity by region 13
Figure 10 World SBR solution supply and demand 14
Figure 11 World SBR solution production by region—2015 15
Figure 12 World SBR solution demand by region—2020 (projected) 15
Figure 13 World SBR solution demand by region 16
Figure 14 Solution SBR capacity by region 17
Figure 15 Cash costs for various processes at the USGC location 18
Figure 16 Emulsion SBR cash costs 19
Figure 17 Solution SBR cash costs 19
Figure 18 Solution SBR process 22
Figure 19 Emulsion polymerization process 23
Figure 20 SBR capital costs 27
Figure 21 SBR production costs 29
Figure 22 SBR production processes—CO₂ emissions 30
Figure 23 SBR production processes—Water usage 30
Figure 24 Styrene-butadiene rubber end uses 31
Figure 25 SBR emulsion supply and demand 32
Figure 26 World SBR emulsion production by region—2015 33
Figure 27 World SBR emulsion demand by region—2020 (projected) 33
Figure 28 SBR emulsion demand by region 34
Figure 29 SBR emulsion capacity by region 35
Figure 30 World SBR solution supply and demand 36
Figure 31 World SBR solution production by region—2015 37
Figure 32 World SBR solution demand by region—2020 (projected) 37
Figure 33 World SBR solution demand by region 38
Figure 34 World SBR solution capacity by region 39
Figure 35 Sample tire rating label (2012) 42
Figure 36 Styrene price history 44
Figure 37 Butadiene price history 45
Figure 38 Emulsion SBR price history 46
Figure 39 Solution SBR price history 46
Figure 40 SBR cash costs (USGC location) 47
Figure 41 SBR cash costs (emulsion polymerization) 48
Figure 42 SBR cash costs (Lanxess solution polymerization) 48