INS CHEMICAL SBR Process Summary

Process Economics Program Review 2017-11

February 2017

ihs.com

Girish Ballal Principal Analyst

PEP Review 2017-11

SBR Process Summary

Girish Ballal, Principal Analyst

Abstract

Styrene-butadiene rubber (SBR) is currently the largest-volume elastomer produced on a global basis. It is used mostly in the production of automobile tires, but also in the production of industrial goods such as belts and hoses. The largest end use of styrene-butadiene rubber is in production of automobile tires. Other uses of SBR include industrial goods such as conveyer belts, industrial hoses, and gaskets, as well as consumer goods such as footwear. There are two classes of production processes for SBR. Emulsion polymerization is the original process and still the dominant process in the industry. However, the solution polymerization process has emerged as the preferred process of choice. Global SBR demands by the emulsion and solution polymerization processes are expected to grow at annual rates of 3.1% and 4.4%, respectively, in the near future.

In this Process Economics Program (PEP) process summary, we review the current technologies for industrial production of styrene-butadiene rubber. Almost 76% of SBR is currently produced by the emulsion process, versus 24% by the solution polymerization process. The solution polymerization process results in better quality product with more flexibility in tailoring the properties relevant to "green tires" (longer-lasting tires that allow higher gas mileage). The technologies presented here are based on previous PEP reports and reviews on this subject and are consolidated for a convenient overview. Moreover, a brief summary of SBR supply and demand is presented, mostly on the global basis. Historical price movement in the product and the feedstock is presented along with a summary of underlying market drivers.

The production economics assessment in this review is based on a US Gulf Coast (USGC) location. However, an iPEP Navigator module is attached to the electronic version of this process summary to allow a quick conversion of snapshot process economics to three other major regions—Germany, Japan, and China. With the selection of each competing process, the module also allows production economics to be reported in English or metric units for each region.

Moreover, due to the fluctuation and variation of feedstock and utility prices over time and in different regions, ranking of the processes by a snapshot comparison can be misleading. To overcome the deficiency of a traditional snapshot economics comparison, this process summary also includes an iPEP Spectra interactive data module, by which our clients can quickly compare historical quarterly production economics of competing processes in major global regions from 2000 through the second quarter of 2016. The interactive module, written as a Microsoft Excel pivot table, is also attached with the electronic version of this process summary. The module provides a powerful interactive tool to compare production economics at various levels, such as variable cost, cash cost, and full production cost. An iPEP Spectra module provides a more comprehensive way of assessing competing technologies, leading to a more valid investment decision.

While the processes herein are PEP's independent interpretation of the companies' patent literature and may not reflect in whole or in part the actual plant configuration, we do believe that they are sufficiently representative of the processes to estimate the plant economics within the range of accuracy for economic evaluations of the conceptual process designs.

1

Contents

1	Executive summary	6
	Introduction	6
	Processes	6
	Producers	6
	Process economics	7
	Environmental impact	8
	Market overview	9
	End-use markets and demand drivers	9
	Supply and demand	10
	Emulsion SBR	10
	Solution SBR	13
	Cash costs	17
~		19
2	Production processes	20
	Introduction	20
	Chemistry	20
	Copolymerization	20
	Living polymerization	21 21
	Commercial technologies	21
	SBR by solution polymerization	22
	SBR by emulsion polymerization	24
	Comparison of key process parameters	24
3	Technology review Process economics	24 26
3	Variable costs	26
	Capital costs	20
	Production costs	27
	Environmental impact	29
4	Market overview	31
*	End-use markets and demand drivers	31
	Supply and demand	32
	SBR emulsion	32
	Solution SBR	35
	Capacity	39
	Environmental issues	41
5	Historical economics comparison	44
Č	Historical prices	44
	Cash costs	47
6	Conclusions	49
	Appendix B—Detailed process economics	
Appendix C—Cited references		52 60
Appendix D—Patent summary table		62

IHS[™] CHEMICAL

INS "CHEMICAL COPYRIGHT NOTICE AND DISCLAIMER © 2017 IHS. For internal use of IHS clients only. No portion of this report may be reproduced, reused, or otherwise distributed in any form without prior written consent, with the exception of any internal client distribution as may be permitted in the license agreement between client and IHS. Content reproduced or redistribution tables and completeness are not warranted, nor are the opinions and analyses that are based upon it, and to the extent permitted by law, IHS shall not be liable for any errors or omissions or any loss, damage, or expense incurred by reliance on information or any statement contained herein. In particular, please note that nor on warranty is given as to the achievement or reasonableness of, and no reliance should be placed on, any projections, forecasts, estimates, or assumptions, and, due to various risks and uncertainties, actual events and results may differ materially from forecasts and statements of belief noted herein. This report is not to be construed as legal or financial advice, and use of or reliance on any information in this ar which at client's own risk. IHS and the IHS loon are trademarks of IHS. on any information in this publication is entirely at dient's own risk. IHS and the IHS logo are trademarks of IHS.

Tables

Table 1 Comparison of key process parameters	24
Table 2 SBR variable costs	26
Table 3 SBR capital costs	27
Table 4 SBR production costs	28
Table 5 SBR production processes—CO ₂ emissions	29
Table 6 SBR production processes—Water usage	30
Table 7 Largest producers of emulsion SBR	40
Table 8 Largest producers of solution SBR	41
Table 9 Emulsion SBR product specifications	51
Table 10 Solution SBR product specifications	51
Table 11 Solution SBR by Bridgestone process—Production costs	53
Table 12 Solution SBR by Versalis process—Production costs	54
Table 13 Solution SBR production by Lanxess process—Production costs	55
Table 14 Solution SBR Bridgestone98—Production costs	56
Table 15 Emulsion SBR—Production costs	58
Table 16 SBR patent summary	63

Figures

Figure 1 SBR production processes—Capital investment	7
Figure 2 SBR production processes—Production costs	8
Figure 3 SBR production processes—CO ₂ emissions	9
Figure 4 SBR production processes—Water usage	9
Figure 5 SBR emulsion supply and demand	11
Figure 6 World SBR emulsion production by region—2015	11
Figure 7 World SBR emulsion demand by region—2020 (projected)	12
Figure 8 SBR emulsion demand by region	12
Figure 9 SBR emulsion capacity by region	13
Figure 10 World SBR solution supply and demand	14
Figure 11 World SBR solution production by region—2015	15
Figure 12 World SBR solution demand by region—2020 (projected)	15
Figure 13 World SBR solution demand by region	16
Figure 14 Solution SBR capacity by region	17
Figure 15 Cash costs for various processes at the USGC location	18
Figure 16 Emulsion SBR cash costs	19
Figure 17 Solution SBR cash costs	19
Figure 18 Solution SBR process	22
Figure 19 Emulsion polymerization process	23
Figure 20 SBR capital costs	27
Figure 21 SBR production costs	29
Figure 22 SBR production processes—CO ₂ emissions	30
Figure 23 SBR production processes—Water usage	30
Figure 24 Styrene-butadiene rubber end uses	31
Figure 25 SBR emulsion supply and demand	32
Figure 26 World SBR emulsion production by region—2015	33
Figure 27 World SBR emulsion demand by region—2020 (projected)	33
Figure 28 SBR emulsion demand by region	34
Figure 29 SBR emulsion capacity by region	35
Figure 30 World SBR solution supply and demand	36
Figure 31 World SBR solution production by region—2015	37
Figure 32 World SBR solution demand by region—2020 (projected)	37

38
39
42
44
45
46
46
47
48
48

IHS Customer Care:

Americas: +1 800 IHS CARE (+1 800 447 2273); CustomerCare@ihs.com Europe, Middle East, and Africa: +44 (0) 1344 328 300; Customer.Support@ihs.com Asia and the Pacific Rim: +604 291 3600; SupportAPAC@ihs.com

