PEP Review 2017-13
TDI (Toluene Diisocyanate)
Process Update

Ron Smith
Director, Chlor-alkali, Water, Energy
PEP Review 2017-13

TDI (Toluene Diisocyanate) Process Update

Ron Smith, Director, Chlor-alkali, Water, Energy

Abstract

Isocyanates are a major ingredient for production of polyurethane products that are formed by the reactive polymerization of isocyanates with polyols. A long and difficult search for a reasonable economic pathway to commercially produce isocyanates by vapor-phase phosgenation of toluene diamine (TDA) in place of liquid-phase phosgenation has been developed and commercialized since our last integrated report on isocyanates (PEP Report 1E) was published in August 1992.

Isocyanates are produced in large quantities and serve mainly as starting materials for the production of polyurethanes. They are usually prepared by reacting the corresponding amines with phosgene. One way of producing isocyanates is the reaction of the amines with phosgene in the gas phase. This is usually referred to as a gas-phase phosgenation process, characterized by the fact that the reaction conditions are selected so that at least the reaction components amine, isocyanate, and phosgene—but preferably all reactants, auxiliary agents, products, and reaction intermediates—are gaseous under the conditions selected. Advantages of gas-phase phosgenation include reduced phosgene holdup, avoiding difficult phosgenate intermediates, and increased reaction yields.

In this review, we investigate large-scale, single-train integrated technology and economics for production of toluene diisocyanate (TDI), including nitration of toluene to produce dinitrotoluene (DNT), hydrogenation of DNT to produce toluene diamine (TDA), production of phosgene from carbon monoxide and chlorine, gas-phase phosgenation of TDA to produce crude TDI, separation/recovery of TDI products, and possible hydrolysis of TDI tars to recover and recycle TDA. The key gas-phase phosgenation step produces isocyanates from TDA at high pressure and temperature, enabling a significant shortening of residence time in the reactor. The rate-determining phosgenation step is the dissociation of the polymeric TDA–carbonyl chloride intermediate into polymeric TDI and HCl, followed by HCl removal.

A summary of the process economics for production of 300,000 metric tons/year (660 million lbs/year) of TDI by continuous vapor-phase phosgenation shows that on a US Gulf Coast basis, a world-scale, single-train, integrated vapor-phase technology–based plant will easily meet plant gate costs. On the same basis, a world-scale, single-train plant will also approximately meet net production costs. With lower capital and manufacturing costs—for example, in China—manufacturing operations would likely be more profitable. The Bayer MaterialScience plant in China is the first to use new gas-phase phosgenation technology at world scale. The goal for this technology is reported to be able to run at a turndown capacity of about 50% of full rate without reducing product quality, which means that a plant can be far more responsive to market demand without the need for multiple plants.
Contents

1 Introduction 6
2 Summary 8
 Markets 8
 Technology 9
 Economics 9
3 Industry status 10
4 Technology review 16
 Dinitrotoluene (DNT) 16
 Toluenediamine (TDA) 16
 Toluene diisocyanate (TDI) 17
 Toluene nitration 19
 Effect of introducing reactants 20
 Effect on the overall rate of reaction 21
 Effect of reaction temperature 22
 Secondary reactions in the nitration of toluene 23
 Hydrogenation of dinitrotoluene 23
 Phosgene production 27
 TDA vapor-phase phosgenation 28
 Chlorine recycling 29
 TDA recovery from distillation residues 35
 TDI recovery from distillation residues 35
 Granulation technology 36
 Spray dry technology 36
 Combined fluidization technology 38
 Recovery of TDI using a dividing wall column 39
 Pre-fractionation zone 41
 Stripping zone 42
 Rectifying zone 42
 Main fractionation zone 42
5 Chemistry 44
 Toluene nitration 44
 DNT hydrogenaton 45
 Phosgene generation 46
 TDA phosgenation 47
 Process technologies based on chemistry 50
5.1 Concept of chemical recycle of TDI as TDA 51
6 Review of processes 53
 Nitration of toluene to form dinitrotoluene 53
 Hydrogenation of DNT to form toluene diamine (TDA) 58
 Recovery of TDA product from crude TDA using a dividing wall column 62
 Long-term storage and transport of TDA 65
 Phosgenation of TDA 66
 Modern crude TDI distillation 68
 Use of a dividing wall column to recover TDI 71
TDI residue hydrolysis
Recovery of TDI from distillation residues
Commercial status of dividing wall columns (DWC)
Storage and handling of TDI

7 Process description
Section 100—Nitration and DNT recovery
Nitration of toluene to DNT
Toluene nitration reactor system design
Toluene nitration
Reprocessing waste sulfuric acids
Treatment of the effluents
Spent acid
Wastewater
Waste gas
Purification of crude DNT
Requirements for a modern facility for production of DNT
Waste gas
Wastewater

Section 200—Hydrogenation and TDA recovery
Slurry catalyst filtration
DNT hydrogenation
Crude TDA purification
Dehydrogenation of toluene diamine from water and solvent

8 Process discussion
Gas-phase phosgenation
Reduction of hydrolyzable chlorides
Obtaining organic isocyanates from distillation residues
Materials of construction

9 Cost estimates
Integrated TDI production by vapor-phase phosgenation
Capital costs
Production costs

Appendix A—Cited references
Appendix B—Process flow diagrams

Tables

Table 3.1 TDI production capacity by major world region
Table 3.2 Major TDI producers in China in 2017
Table 3.3 Major new TDI capacity in China—2017 and beyond
Table 6.1 Specifications and physical properties of commercial toluene diamines
Table 6.2 Industrial applications of DWCs for ternary systems
Table 7.1 Integrated production of TDI from toluene by vapor-phase phosgenation of TDA—Design basis and assumptions
Table 7.1 Integrated production of TDI from toluene by vapor-phase phosgenation of TDA—Design basis and assumptions (concluded)
Table 7.2 Toluene nitration stages—Basis for design (US 7851661)
Table 7.3 Filter design parameters (standard 2" OD x 70" length elements)
Table 7.4 Carbon monoxide feed purity specifications
Table 7.5 Chlorine feed purity specifications
Table 7.6 Integrated production of TDI from toluene by vapor-phase phosgenation of TDA—Stream flows
Table 7.7 Production of TDI—Major equipment
Table 7.8 Production of TDI—Utilities summary
Table 9.1 Integrated TDI production by vapor-phase phosgenation—Total capital investment
Table 9.2 Integrated TDI production by vapor-phase phosgenation—Capital investment by section
Table 9.3 Integrated TDI production by vapor-phase phosgenation—Production costs

Figures

Figure 3.1 Distribution of TDI product sales—2017
Figure 4.1 Simplified block flow diagram for the integrated production of TDI from toluene
Figure 4.2 Block flow diagram for overall formation of TDI
Figure 4.3 Free-standing TDI production process
Figure 4.4 Block flow diagram for hydrogenation of DNT
Figure 4.4a Monolithic DNT hydrogenation reaction system
Figure 4.5 Hydrogen and carbon monoxide production plant
Figure 4.6 Chlorine recycling
Figure 4.7 HCl catalytic reaction gas product work-up
Figure 4.8 Sumitomo HCl oxidation process
Figure 4.9 Integrated catalytic and electrolytic technologies
Figure 4.10 Spray dry method for working up distillation residues from isocyanate production
Figure 4.11 Combined fluidization dryer
Figure 4.12 SMS process for recovery of TDI from distillation residues
Figure 4.13 TDI dividing wall column
Figure 4.14 Process for recovery of TDI from distillation residues
Figure 5.1 Process flow schematic of chemical recycling system
Figure 6.1 Typical simplified process flow schematic for toluene nitration
Figure 6.2 Isomer production in the nitration of toluene
Figure 6.3 Integration of a mixed acid nitration plant with an acid recovery plant
Figure 6.4 typical simplified process flow schematic for the purification of crude TDA
Figure 6.5 Integrated process flow schematic for recovery of TDA from crude nitration product
Figure 6.6 Distillate recovery of toluene diamine from crude TDA using a dividing wall column
Figure 6.7 Heat integrated columns for purification of crude TDI
Figure 6.8 Process for working up an isocyanate comprising stream
Figure 6.9 Number of reported DWCs
Figure 7.1 Two-stage nitration reaction system
Figure 7.2 Generic process flow schematic of a single nitration loop reactor
Figure 7.3 Process flow schematic for reprocessing waste sulfuric acids
Figure 7.4 Distillation system for prevention of impurity precipitations from crude nitroaromatic products
Figure 7.5 Conceptual block flow diagram of a modern nitration plant configuration
Figure 7.6 Reclamation of spent sulfuric acid
Figure 7.7 Flow schematic for an inside out single filtration unit
Figure 7.8 Filtration pressure drop cycles
Figure 7.9 Continuous crossflow filtration flow system schematic
Figure 7.10 Filter system schematic
Figure 7.11 Mixing of phosgene and TDA starting materials in a tubular reactor
Figure 7.11 Section 100—Nitration and DNT recovery section
Figure 7.11 Section 200—Hydrogenation and TDA recovery section
Figure 7.11 Section 300—Phosgene generation
Figure 7.11 Section 400—Gas-phase phosgenation; Section 500—HCl recovery