IHS CHEMICAL TDI (Toluene Diisocyanate) Process Update

Process Economics Program Review 2017-13

December 2017

ihs.com

PEP Review 2017-13 TDI (Toluene Diisocyanate) Process Update

Ron Smith Director, Chlor-alkali, Water, Energy

PEP Review 2017-13

TDI (Toluene Diisocyanate) Process Update

Ron Smith, Director, Chlor-alkali, Water, Energy

Abstract

Isocyanates are a major ingredient for production of polyurethane products that are formed by the reactive polymerization of isocyanates with polyols. A long and difficult search for a reasonable economic pathway to commercially produce isocyanates by vapor-phase phosgenation of toluene diamine (TDA) in place of liquid-phase phosgenation has been developed and commercialized since our last integrated report on isocyanates (PEP Report 1E) was published in August 1992.

Isocyanates are produced in large quantities and serve mainly as starting materials for the production of polyurethanes. They are usually prepared by reacting the corresponding amines with phosgene. One way of producing isocyanates is the reaction of the amines with phosgene in the gas phase. This is usually referred to as a gas-phase phosgenation process, characterized by the fact that the reaction conditions are selected so that at least the reaction components amine, isocyanate, and phosgene—but preferably all reactants, auxiliary agents, products, and reaction intermediates—are gaseous under the conditions selected. Advantages of gas-phase phosgenation include reduced phosgene holdup, avoiding difficult phosgenate intermediates, and increased reaction yields.

In this review, we investigate large-scale, single-train integrated technology and economics for production of toluene diisocyanate (TDI), including nitration of toluene to produce dinitrotoluene (DNT), hydrogenation of DNT to produce toluene diamine (TDA), production of phosgene from carbon monoxide and chlorine, gas-phase phosgenation of TDA to produce crude TDI, separation/recovery of TDI products, and possible hydrolysis of TDI tars to recover and recycle TDA. The key gas-phase phosgenation step produces isocyanates from TDA at high pressure and temperature, enabling a significant shortening of residence time in the reactor. The rate-determining phosgenation step is the dissociation of the polymeric TDA–carbonyl chloride intermediate into polymeric TDI and HCl, followed by HCl removal.

A summary of the process economics for production of 300,000 metric tons/year (660 million lbs/year) of TDI by continuous vapor-phase phosgenation shows that on a US Gulf Coast basis, a world-scale, singletrain, integrated vapor-phase technology–based plant will easily meet plant gate costs. On the same basis, a world-scale, single-train plant will also approximately meet net production costs. With lower capital and manufacturing costs—for example, in China—manufacturing operations would likely be more profitable. The Bayer MaterialScience plant in China is the first to use new gas-phase phosgenation technology at world scale. The goal for this technology is reported to be able to run at a turndown capacity of about 50% of full rate without reducing product quality, which means that a plant can be far more responsive to market demand without the need for multiple plants.

© 2017 IHS

1

Contents

1	Introduction	6
2	Summary	8
	Markets	8
	Technology	9
	Economics	9
3	Industry status	10
4	Technology review	16
	Dinitrotoluene (DNT)	16
	Toluenediamine (TDA)	16
	Toluene diisocyanate (TDI)	17
	Toluene nitration	19
	Effect of introducing reactants	20
	Effect on the overall rate of reaction	21
	Effect of reaction temperature	22
	Secondary reactions in the nitration of toluene	23
	Hydrogenation of dinitrotoluene	23
	Phosgene production	27
	TDA vapor-phase phosgenation	28
	Chlorine recycling	29
	TDA recovery from distillation residues	35
	TDI recovery from distillation residues	35
	Granulation technology	36
	Spray dry technology	36
	Combined fluidization technology	38
	Recovery of TDI using a dividing wall column	39
	Pre-fractionation zone	41
	Stripping zone	42
	Rectifying zone	42
_	Main fractionation zone	42
5	Chemistry	44
	Toluene nitration	44
	DNT hydrogenaton	45
	Phosgene generation	46
	TDA phosgenation	47
	Process technologies based on chemistry	50
	Concept of chemical recycle of TDI as TDA	51
6	Review of processes	53
	Nitration of toluene to form dinitrotoluene	53
	Hydrogenation of DNT to form toluene diamine (TDA)	58
	Recovery of TDA product from crude TDA using a dividing wall column	62
	Long-term storage and transport of TDA	65
	Phosgenation of TDA	66
	Modern crude TDI distillation	68
	Use of a dividing wall column to recover TDI	71

IHS™ CHEMICAL

COPYRIGHT NOTCE COPYRIGHT NOTCE No portion of this report may be reproduced, reused, or otherwise distributed in any form without prior written consent, with the exception of any internal client distribution as may be permitted in the license agreement between client and IHS. Content reproduced or redistributed with IHS permission must display IHS legal notices and attributions of authorship. The information contained herein is from sources considered reliable, but its accuracy and completeness are not warranted, nor are the opinions and analyses that are based upon it, and to the extent permitted by law, IHS shall not be liable for any errors or omissions or any loss, damage, or expense incurred by reliance on information or any statement contained herein. In particular, please note that no representation or warranty is given as to the achievement or reasonableness of, and no reliance should be placed on, any projections, forecasts, estimates, or assumptions, and, due to variaus risks and uncertainties, actual events and results may differ materially from forecasts and statements of belief noted herein. This report is not to be construed as legal or financial advice, and use of or reliance on any information in this publication is entirely at client's own risk. IHS and the IHS logo are trademarks of IHS.

	TDI residue hydrolysis	71
	Recovery of TDI from distillation residues	73
	Commercial status of dividing wall columns (DWC)	74
	Storage and handling of TDI	76
7	Process description	78
	Section 100—Nitration and DNT recovery	80
	Nitration of toluene to DNT	81
	Toluene nitration reactor system design	85
	Toluene nitration	87
	Reprocessing waste sulfuric acids	87
	Treatment of the effluents	90
	Spent acid	90
	Wastewater	90
	Waste gas	92
	Purification of crude DNT	92
	Requirements for a modern facility for production of DNT	95
	Waste gas	99
	Wastewater	99
	Section 200—Hydrogenation and TDA recovery	100
	Slurry catalyst filtration	101
	DNT hydrogenation	106
	Crude TDA purification	107
	Dehydrogenation of toluene diamine from water and solvent	109
8	Process discussion	130
	Gas-phase phosgenation	131
	Reduction of hydrolyzable chlorides	132
	Obtaining organic isocyanates from distillation residues	133
	Materials of construction	133
9	Cost estimates	135
	Integrated TDI production by vapor-phase phosgenation	135
	Capital costs	135
	Production costs	135
Ар	pendix A—Cited references	141
Ар	pendix B—Process flow diagrams	145

Tables

© 2017 IHS	3	December 2017
Table 7.7	Production of TDI—Major equipment	126
	Stream flows	116
Table 7.6	Integrated production of TDI from toluene by vapor-phase phosgenation of TDA—	
	5 Chlorine feed purity specifications	113
	Carbon monoxide feed purity specifications	113
	B Filter design parameters (standard 2" OD x 70" length elements)	105
	2 Toluene nitration stages—Basis for design (US 7851661)	85
	Design basis and assumptions (concluded)	80
l able 7.1	Integrated production of TDI from toluene by vapor-phase phosgenation of TDA—	
T	Design basis and assumptions	79
Table 7.1	Integrated production of TDI from toluene by vapor-phase phosgenation of TDA—	70
	2 Industrial applications of DWCs for ternary systems	76
	Specifications and physical properties of commercial toluene diamines	66
	B Major new TDI capacity in China—2017 and beyond	15
	2 Major TDI producers in China in 2017	13
	TDI production capacity by major world region	11

Downloaded 2 January 2018 10:06 AM UTC by Gomathi N, IHS (Gomathi.N@ihsmarkit.com) - For Use by Licensed Subscribers Only

Table 7.8 Production of TDI—Utilities summary	130
Table 9.1 Integrated TDI production by vapor-phase phosgenation—Total capital investment	136
Table 9.2 Integrated TDI production by vapor-phase phosgenation—Capital investment by	
section	137
Table 9.3 Integrated TDI production by vapor-phase phosgenation—Production costs	139

Figures

Figure 3.1 Distribution of TDI product sales—2017	13
Figure 4.1 Simplified block flow diagram for the integrated production of TDI from toluene	17
Figure 4.2 Block flow diagram for overall formation of TDI	18
Figure 4.3 Free-standing TDI production process	19
Figure 4.4 Block flow diagram for hydrogenation of DNT	24
Figure 4.4a Monolithic DNT hydrogenation reaction system	25
Figure 4.5 Hydrogen and carbon monoxide production plant	27
Figure 4.6 Chlorine recycling	30
Figure 4.7 HCI catalytic reaction gas product work-up	31
Figure 4.8 Sumitomo HCI oxidation process	32
Figure 4.9 Integrated catalytic and electrolytic technologies	34
Figure 4.10 Spray dry method for working up distillation residues from isocyanate production	37
Figure 4.11 Combined fluidization dryer	38
Figure 4.12 SMS process for recovery of TDI from distillation residues	39
Figure 4.13 TDI dividing wall column	41
Figure 4.14 Process for recovery of TDI from distillation residues	43
Figure 5.1 Process flow schematic of chemical recycling system	52
Figure 6.1 Typical simplified process flow schematic for toluene nitration	53
Figure 6.2 Isomer production in the nitration of toluene	55
Figure 6.3 Integration of a mixed acid nitration plant with an acid recovery plant	57
Figure 6.4 typical simplified process flow schematic for the purification of crude TDA	59
Figure 6.5 Integrated process flow schematic for recovery of TDA from crude nitration product	59
Figure 6.6 Distillative recovery of toluene diamine from crude TDA using a dividing wall column	63
Figure 6.7 Heat integrated columns for purification of crude TDI	68
Figure 6.8 Process for working up an isocyanate comprising stream	72
Figure 6.9 Number of reported DWCs	75
Figure 7.1 Two-stage nitration reaction system	83
Figure 7.2 Generic process flow schematic of a single nitration loop reactor	86
Figure 7.3 Process flow schematic for reprocessing waste sulfuric acids	88
Figure 7.4 Distillation system for prevention of impurity precipitations from crude nitroaromatic	
products	94
Figure 7.5 Conceptual block flow diagram of a modern nitration plant configuration	97
Figure 7.6 Reclamation of spent sulfuric acid	98
Figure 7.7 Flow schematic for an inside out single filtration unit	102
Figure 7.8 Filtration pressure drop cycles	103
Figure 7.9 Continuous crossflow filtration flow system schematic	104
Figure 7.10 Filter system schematic	105
Figure 9.1 Mixing of phosgene and TDA starting materials in a tubular reactor	131
Figure 7.11 Section 100—Nitration and DNT recovery section	146
Figure 7.11 Section 200—Hydrogenation and TDA recovery section	147
Figure 7.11 Section 300—Phosgene generation	148
Figure 7.11 Section 400—Gas-phase phosgenation; Section 500—HCI recovery	149

4

IHS Customer Care:

Americas: +1 800 IHS CARE (+1 800 447 2273); CustomerCare@ihs.com Europe, Middle East, and Africa: +44 (0) 1344 328 300; Customer.Support@ihs.com Asia and the Pacific Rim: +604 291 3600; SupportAPAC@ihs.com

