Crude Oil Atmospheric Distillation

PEP Review 2018-03
May 2018
PEP Review 2018-03

Crude Oil Atmospheric Distillation

Anshuman Agrawal, Associate Director

Abstract

The crude distillation unit is the first unit that processes petroleum crude in any refinery. The petroleum refining process entails the separation of the different useful hydrocarbons present in the crude oil into useful fractions, followed by conversion of some of the hydrocarbons into products having higher-quality performance. The objective of the crude distillation unit is to separate the feed crude blend into different fractions, such as liquefied petroleum gas (LPG), naphtha, kerosene, light gas oil, and heavy gas oil. Atmospheric distillation and vacuum distillation of crude oils are the primary separation processes producing various straight-run products, from gasoline to lube oils. These products, particularly the light and middle distillates (i.e., gasoline, kerosene, and diesel) are more in demand all over the world than their direct availability from crude oils. In this review, the crude blend selected has a specific API gravity of 27.62°API. The selected crude blend is a mixture of Saudi heavy 60 wt%, Saudi medium 30 wt%, and Marlim 10 wt%. The blend feed crude is fractionated into light gas, LPG, naphtha, kerosene, light gas oil, heavy gas oil, and atmospheric residue.

This review presents a technoeconomic evaluation of an atmospheric crude distillation unit, including estimated capital and production cost estimates, with details on important process cost parameters such as battery limits and offsites costs, variable cost, plant cash cost, plant gate cost, production cost, etc. A brief market overview summarizes the major global producing companies, as well as regional and countrywide crude distillation unit capacities. This review also includes the material balance, equipment list, and a brief technology review.

This review was prepared using information derived from public domain information sources. The process design was simulated primarily through BR&E ProMax® 4.0 software simulations. Plant and process economics (CAPEX and OPEX) were worked out using IHS proprietary PEPCOST software, using in places our own design judgments based on operational experience.
Contents

1 Introduction 4
2 Summary 5
3 Industry status 6
4 Technical review 10
 Crude quality definitions 10
 Crude oil processing unit 11
 Preheat trains and furnace 15
 Atmospheric distillation column 16
 Overflash 16
 Pumparound and side stripper of distillation columns 16
5 Process review 17
 Process description 18
 Cost estimates 23
 Capital cost 23
 Production cost 26
 Process discussion 27
 Material of construction 28
 Carbon emissions and water usage 28

Appendix A—Cited references 29
Appendix B—Process flow diagrams 31

Tables

Table 3.1 Major crude distillation units around the world and their capacities 6
Table 3.2 Crude distillation unit capacity in different regions of the world 8
Table 3.3 Crude distillation unit countrywide capacity 8
Table 4.1 Boiling range for typical crude oil fractions at atmospheric pressure 13
Table 4.2 TBP cut points for various crude oil fractions and their processing uses 13
Table 4.3 Light and heavy naphtha stream properties 14
Table 4.4 General specifications of kerosene finished products 14
Table 4.5 Characteristics of aircraft turbine fuels (ASTM D-1655 and DERD 2494) 15
Table 5.1 Blended feed crude assay and basis 17
Table 5.2 Product specifications 19
Table 5.3 Crude distillation unit—Major equipment 22
Table 5.4 Crude distillation unit—Utility summary 23
Table 5.5 Crude distillation unit—Total capital investment 24
Table 5.6 Crude distillation unit—Production cost 25
Table 5.7 Carbon emission from condensate splitter 28

Figures

Figure 4.1 IHS oil markets and downstream crude oil grade map (general) 10
Figure 4.2 Crude oil processing unit block flow diagram 11
Figure 4.3 Crude distillation unit block flow diagram 12
Figure 5.1 Crude distillation unit (with crude preheat circuit) 32