Chevron Lummus Global LC-SLURRY Technology for VR Upgrade

PEP Review 2018-11
May 2018

Gajendra Kumar
Associate Director
Abstract

LC-SLURRY technology, developed by Chevron Lummus Group (CLG), is a slurry hydroprocessing process. CLG used its well-established ebulliating bed hydrocracking technology, LC-FINING, as a basis for developing LC-SLURRY technology. The LC-SLURRY process can be used to convert nearly 100% of heavy oils/solvent deasphalting (SDA) tar to high-value products. This new technology is based on a unique, high-activity catalyst that is recovered in the process (ISOSLURRY™ catalyst), eliminating fouling concerns associated with other catalyst or additive systems.

Like other slurry processes, LC-SLURRY technology is attractive for heavy feeds. It combines the advantages of carbon rejection with the upgraded product quality of hydrogen-addition processes. Because dispersed catalyst systems are not prone to plugging from coke, they can be used to process high metals and high Conradson carbon residue feedstocks.

Residue conversion is projected to continue to increase due to decreasing fuel oil demand coupled with increasing light and middle distillate demand. Processes and motor fuels are both subject to more severe environmental requirements. At the same time, production of heavy crude oils is likely to increase.

In this review, we examine the economics of hydrocracking vacuum residue (VR) for production of liquid fuels based on a 50,000 bpsd (barrels per stream day) grassroots LC-SLURRY unit operating on the US Gulf Coast.

Our technoeconomic evaluation includes estimated capital and production costs, showing the details of important process cost parameters such as battery limits and offsites costs, variable cost, plant cash cost, plant gate cost, production cost, etc. We used information derived from public domain sources and nonconfidential information provided by the licensor, CLG. The process design was simulated primarily using Aspen Technology’s HYSYS® process simulator. We worked out plant and process economics (CAPEX and OPEX) using IHS Markit proprietary PEPCOST software, using in places our own design judgments based on operational experience.
Contents

1 Introduction 6
2 Summary 8
 Process economics 8
 Economics calculation modules for non-US regions 9
 Carbon emissions and water usage 9
 Conclusions 10
3 Industry status 11
 Hydrocracking market 12
4 Process review 14
 LC-SLURRY hydrocracking process 14
 Historical development of LC-SLURRY technology 14
 Principles of LC-SLURRY technology 15
 Advantages of LC-SLURRY process 16
5 Slurry-phase hydrocracking via LC-SLURRY technology 19
 LC-SLURRY technology design basis 19
 LC-SLURRY process description 21
 Section 100—Hydrocracking unit 21
 Section 200—Hydrotreating unit 22
 Section 300—Product separation unit 23
 Section 400—Heavy oil hydrotreating unit 24
 Process discussion 33
 Feedstock 33
 Reactor 34
 Hydrogen supply 34
 Storage 34
 Miscellaneous package units 35
 Catalyst handling unit 35
 Catalyst deoiling section 35
 Low-pressure amine treatment unit 35
 High-pressure amine treatment unit 35
 Hydrogen purification unit 35
 Process waste effluent 35
 Materials of construction 35
 Cost estimates 39
 Fixed capital costs 40
 Production costs 40
Appendix A—Cited references 48
Appendix B—Process flow diagrams 50

Tables

Table 1.1 Licensors of slurry-phase hydrocracking technology processes 7
Table 2.1 LC-SLURRY process—TFC investment for 50,000 bpsd vacuum residue upgrade 8
Table 2.2 LC-SLURRY process economics—Production cost for 50,000 bpsd vacuum residue upgrade 9
Table 2.3 Carbon emission from LC-SLURRY hydrocracking process 10
Table 2.4 Carbon emission from petroleum products 10
Table 2.5 Water usage in LC-SLURRY hydrocracking process
Table 3.1 Hydrocracker average annual capacities (2017)
Table 3.2 Commercial licensing activities of CLG residue hydroprocessing unit
Table 5.1 LC-SLURRY—Design bases and assumptions
Table 5.2 Feedstock and product properties
Table 5.3 Liquid fuels production via LC-SLURRY technology—Main stream flows
Table 5.4 Liquid fuels production via LC-SLURRY technology—Major equipment
Table 5.5 Liquid fuels production via LC-SLURRY technology—Utilities summary
Table 5.6 Liquid fuels production via LC-SLURRY technology—Total capital investment
Table 5.7 Liquid fuels production via LC-SLURRY technology—Capital investment by section
Table 5.8 Liquid fuels production via LC-SLURRY technology—Production costs

Figures

Figure 3.1 Global refined product demand (2017)
Figure 4.1 Block flow diagram for LC-SLURRY process with integrated hydrotreater
Figure 4.2 Schematic representation of LC-FINING ebullating bed reactor
Figure 4.3 Schematic representation of catalyst recovery in LC-SLURRY process
Figure 4.4 Schematic representation of LC-SLURRY hydrotreated fuel oil
Figure 4.5 Liquid yields from different CLG residue upgrading technologies
Figure 5.1 Slurry-phase hydrocracking via LC-SLURRY technology—Hydrocracking (section 100)
Figure 5.1 Slurry-phase hydrocracking via LC-SLURRY technology—Hydrotreating (section 200)
Figure 5.1 Slurry-phase hydrocracking via LC-SLURRY technology—Product separation (section 300)
Figure 5.1 Slurry-phase hydrocracking via LC-SLURRY technology—Heavy oil hydrotreating (section 400)