Sulfuric Acid from Sulfur
Updates on Contact Process

PEP Review 2018-12
February 2018
PEP Review 2018-12

Sulfuric Acid from Sulfur/Updates on Contact Process

Rajiv Narang, Director

Abstract

Sulfuric acid (H₂SO₄) is the world’s largest consumed chemical, with consumption of around 260 MMT (million metric tons) on a 100% acid basis and a growth rate of around 2%. Traditionally, consumption of this chemical is considered as a barometer of a nation’s GDP.

The majority of sulfuric acid production (59%) is from burning of elemental sulfur, in a contact process. The sulfur is sourced mostly from oil and gas processing facilities, in which the sulfur is removed from various petroleum or natural gas products.

IHS Markit’s Process Economics Program (PEP) last addressed this production technology in PEP Report 84A, Sulfuric Acid (June 1985), which covered the manufacture of sulfuric acid from sulfur in new versus old, retrofitted plants, as well as from metallurgical offgases.

This review specifically updates the contact process for the production of sulfuric acid by burning of elemental sulfur. The review examines the developments in this production technology, including advances in catalyst, material of construction, and heat recovery. The process is simulated using Aspen Plus™ software. It focuses on technology basis, raw material and utility consumptions, equipment list, capital cost, along with capacity exponents, and production costs for a 2,000 STPD (short ton per day) of (100% basis) sulfuric acid product.

This review provides insight into sulfuric acid plant process economics, and can be used as a tool for cost estimation for different plant capacities. It will be highly beneficial for planners and producers who are considering the manufacture of sulfuric acid.

An interactive iPEP Navigator module the process is included, which provides a snapshot of the process economics and allows the user to select the units and global region of interest.

The technological and economic assessment of the process is PEP’s independent interpretation of the commercial process based on information presented in open literature, such as patents or technical articles, and may not reflect in whole or in part the actual plant configuration. We do believe that they are sufficiently representative of the process and process economics within the range of accuracy necessary for economic evaluations of the conceptual process designs.
Figures

Figure 2.1 Commercial routes to manufacture sulfuric acid 6
Figure 3.1 Structure of sulfuric acid 8
Figure 3.2 Heat of dilution of sulfuric acid 8
Figure 3.3 Boiling point of sulfuric acid 9
Figure 3.4 Viscosity of sulfur 10
Figure 3.5 Block flow diagram of sulfuric acid manufacture by double contact process 11
Figure 3.6 Solid sulfur 12
Figure 3.7 Equilibrium conversion curve for SO₂ oxidation 13
Figure 3.8 Heat flow curve for MECS supplied catalyst 14
Figure 3.9 First bed reaction path 25
Figure 3.10 First and second bed reaction path 26
Figure 3.11 Overall reaction path in converter 27
Figure 3.12 Final pass reaction path in converter 27
Figure 3.13 Composite curve for sulfuric acid 28
Figure 4.1 Process flow diagram—Sulfuric acid from sulfur 44
Figure 4.2 Process flow diagram—Sulfuric acid from sulfur 45
Disclaimer

The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by any means, without the prior written permission of IHS Markit Ltd. or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation (including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS Markit nor the author(s) has any obligation to update this presentation in the event that any content, opinion, statement, estimate, or projection (collectively, "information") changes or subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or timeliness of any information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient, whether in contract, in tort (including negligence), under warranty, under statute or otherwise, in respect of any loss or damage suffered by any recipient as a result of or in connection with any information provided, or any course of action determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not be understood to be an endorsement of that website or the site's owners (or their products/services). IHS Markit is not responsible for either the content or output of external websites. Copyright © 2018, IHS Markit. All rights reserved and all intellectual property rights are retained by IHS Markit.