Abstract

Isoprene global production is around 837,000 metric tons (MT), of which Russia produces about half. Dehydrogenation of isopentane is a significant contributor to this production. This feedstock is not used in the rest of the world, as there are more valuable uses of isopentane. The consumption of isoprene is primarily in the tire industry as polyisoprene elastomers. The global growth of isoprene is expected to be 2.5%, principally led by growth in China.

PEP Review 2017-07, Isoprene Process Summary (February 2017) covers other routes of manufacturing isoprene. This review analyzes the design based on dehydrogenation of isopentane to produce isoprene, using industrially accepted dehydrogenation catalysis, and extraction distillation using DMF as a solvent. The focus of this review includes technology basis, raw material and utility consumptions, equipment list, capital cost along with capacity exponents, and production costs for 80 million lb/year of isoprene.

This review provides insight into isoprene plant process economics, and can be used as a tool for cost estimation for different plant capacities. It will be highly beneficial for planners and producers looking to manufacture isoprene.

An interactive module is included—the iPEP Navigator for the process—which provides a snapshot of the process economics and allows the user to select the units and global region of interest.

The technological and economic assessment of the process is PEP’s independent interpretation of the commercial process based on information presented in open literature, such as patents or technical articles, and may not reflect in whole or in part the actual plant configuration. We do believe that they are sufficiently representative of the process and process economics within the range of accuracy necessary for economic evaluations of the conceptual process designs.
Contents

1 Introduction 5
2 Summary 7
3 Process review 8
 Process chemistry 9
 Process description 12
 Section 100—First-stage dehydrogenation 13
 Section 200—Second-stage dehydrogenation 14
 Section 300—ISBL support equipment 15
 Section 400—Offsite storage 15
 Process discussion 24
 Materials of construction 24
 Cost estimates 25
 Fixed capital costs 25
 Production costs 25

Appendix A—Design and cost basis 29
 Design conditions 30
 Cost bases 30
 Capital investment 30
 Project construction timing 32
 Available utilities 32
 Production costs 32
 Effect of operating level on production costs 33

Appendix B—Cited references 34

Appendix C—Process flow diagrams 36

Tables

Table 2.1 Summary of process 7
Table 3.1 Effect of temperature on yields of reaction products and selectivity of the catalyst 10
Table 3.2 Boiling points and relative volatilities with DMF 11
Table 3.3 Design basis and assumptions 13
Table 3.4 First-stage dehydrogenation stream flows 16
Table 3.5 Second-stage dehydrogenation stream flows 19
Table 3.6 Waste streams 20
Table 3.7 Major equipment 21
Table 3.8 Utilities summary 24
Table 3.9 Capital cost 26
Table 3.10 Production costs 27
Table 3.11 Production costs (concluded) 28
Table 3.12 Carbon and water footprint 28
Figures

Figure 1.1 Commercial routes to isoprene 6
Figure 3.1 Isoprene structure and properties 8
Figure 3.2 Block flow diagram of two-stage dehydrogenation of isopentane to isoprene 9
Figure 3.3 Reaction scheme of two-stage dehydrogenation of isopentane to isoprene 9
Figure 3.3 Axial distribution of reactants 10
Figure 3.4 Dimethylformamide properties 12
Figure 3.5 Isoprene process flow scheme 37